Physics 12

ELECTROSTATICS

$$
\mathbf{F}=\frac{\mathrm{kQ}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}} \quad \mathbf{E}=\frac{\mathrm{V}}{\mathrm{~d}} \quad \mathrm{~V}=\frac{\mathrm{kQ}}{\mathrm{r}}
$$

$$
\mathrm{E}_{\mathrm{p}}=\frac{\mathrm{KQ}_{1} \mathrm{Q}_{2}}{\mathrm{r}} \quad \mathrm{~F}=\mathrm{q} \mathbf{E} \quad \mathrm{~V}=\frac{\Delta \mathrm{E}_{\mathrm{p}}}{\mathrm{Q}}
$$

NAME: \qquad
Block: \qquad

Electric Charge

Electrical charges are caused by the numbers of electrons and protons present in the atoms of a material.

Due to the configuration of an atom (the Bohr model is shown), only the \qquad can be moved easily as these particles are located in the external regions of the atom. Therefore, when an object is charged, it has an excess or shortage of \qquad .
An electron stores the smallest individual unit of charge, $\mathbf{q}=1.6 \times 10^{-19} \mathrm{C}$. The total charge on an object is calculated using the formula $\mathrm{Q}=\mathrm{nq}$, where Q represents the total charge and n represents the number of electrons. All electrical charges are due to an \qquad or \qquad of electrons.

When charged objects are brought near each other, they will either be attracted or repelled according to the Fundamental Law of Electric Charges.

1. Oppositely charged objects will

\qquad each other.
2. Objects with the same charge will \qquad each other.
3. Charged objects will \qquad neutral objects.

Coulomb's Law: This law gives the force of attraction (or repulsion) between charged objects. Define the variables involved in this law in the space below and state their units.
$\mathrm{F}=\frac{\mathrm{kQq}}{\mathrm{r}^{2}}$ where:
F: \qquad
k: \qquad
Q: \qquad
q: \qquad
r: \qquad

Sample Problem: Using Coulomb's Law

Two cork balls of mass $5 \times 10^{-4} \mathrm{~kg}$ hang from the same support point by massless insulating threads 0.1 m in length. A total charge of $2.0 \times 10^{-7} \mathrm{C}$ is added to the system, which is distributed equally between the two charges. The cork balls come to rest in equilibrium with 0.14 m between their centers.
a) Draw a free body diagram for each ball, clearly labeling all the forces on each ball?

b) What is the value of the angle that the threads make with the vertical when the system is in equilibrium? (Isolate one of the objects and draw a vector force diagram.)

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{E}}=4.6 \times 10^{-3} \mathrm{~N} \\
\mathrm{~F}_{\mathrm{g}}=4.9 \times 10^{-3} \mathrm{~N} \\
\theta=43.1^{\circ}
\end{array}
$$

Sample Problem: Using Coulomb's Law

Calculate the electric force on charge ' C ' due to charges ' A ' and ' B '. Remember to determine both the magnitude and direction!

Step 1. Determine the magnitude of the force exerted by each of charges ' A ' and ' B ' on ' C '.
Between A and C

Between B and C

Step 2. Construct a vector diagram and calculate the resultant force.

$$
\mathrm{Fr}=0.094 \mathrm{~N}
$$

$$
\theta=63.2^{\circ}
$$

Electric Field

The electric field at each point in space is defined to be \qquad

Note that electric field is a vector, so it has both magnitude and \qquad . Electric fields are represented by electric field lines, that are directed away from positive charges and towards negative charges. A stronger electric field is shown by more field lines, drawn closer together.

Electric field lines between and around and between positive and negative point charges

Electric field lines between two parallel plates, the top with a positive charge and the bottom with a negative charge.

Note that the electric field strength in the interior region between two oppositely charged parallel plates is constant; the field is not stronger as you get closer to either plate.

Electric Field Strength

The electric field strength ' E ' is defined as the force per unit charge on a test charge placed in an electric field.

$$
\mathrm{E}=\frac{\mathrm{F}}{\mathrm{Q}}=\frac{\frac{\mathrm{kQ}_{1} \mathrm{Q}_{2}}{R^{2}}}{\mathrm{Q}_{1}}=\frac{k Q_{2}}{R^{2}}
$$

Define the variables involved in this equation in the space below and state their units.
\qquad
k:

Q:

Sample Problem: Electric Field

Calculate the magnitude and direction of the electric field at a point ' \mathbf{B} ' as shown in the diagram below. Each point charge $\left(Q_{1}\right.$ and $\left.Q_{2}\right)$ has a charge of $50 \mu \mathrm{C}$.
Step 1. Construct a vector diagram showing the direction of each electric field.

Step 2. Calculate the electric field strength due to each charge.

Step 3. The electric field at B is the vector sum of the fields $E_{Q 2}$ and $E_{Q 1}$.
Note that $\mathrm{E}_{\mathrm{Q}} 2$ is away from Q_{2} and $\mathrm{E}_{\mathrm{Q}} 1$ is towards Q_{1}

Use the cosine law to determine E_{B} :

Problem Set \#1: Coulomb's Law and Electric Field		
$3^{\text {rd }}$ Ed. Giancolli Pg. 436-439	$4^{\text {th }}$ Ed. Giancolli Pl Pg. 474-476	$5^{\text {th }}$ Ed. Giancolli Pg. 496-497
Questions \#11, 20	Questions \#8,12, 19	Questions \#9, 17
$\begin{array}{cc} \text { Problems } & \begin{array}{c} \# 1,2,3,7,10,14,17,21, \\ \\ 26^{*}, 37^{*}, 40 \end{array} \end{array}$	Problems $\underset{42}{\# 5,6,12,19,22,25,37, ~}$	Problems $\begin{gathered}\# 1-4,11,14,22, ~ 26,35, ~ \\ 45,53\end{gathered}, ~(2)$

Text References

ELECTROSTATICS
 ELECTRIC POTENTIAL AND ENERGY

Objectives: • solve problems involving electric potential and electric potential energy
Electric Potential: is the potential energy per unit charge and commonly know as voltage. The electric potential has a particular value at one location near a point charge. Electric potential can be calculated, but not physically measured.

Electric Potential Difference: is the difference in electric potential per unit charge between two points in an electric field. Electric potential difference, commonly referred to as potential difference, can be physically measured. Potential difference is equal to the work done by the electric force to move the charge between two points in an electric field.

Define all variables in the equation for potential difference below and give the units for each variable.

$$
\mathrm{V}=\frac{\Delta \mathrm{E}_{\mathrm{p}}}{\mathrm{q}} \text { where: } \quad \begin{aligned}
& \Delta \mathrm{E}_{\mathrm{p}:}: \\
& \mathrm{q}:
\end{aligned}
$$

\qquad

The unit for electric potential (and potential difference) is $\frac{J}{C}$, commonly known as the
\qquad .
When a particle is accelerated through a potential difference, such as between two parallel charged plates, the particle's electric potential energy near one plate is transformed into \qquad energy near the other plate.

The two diagrams on the next page illustrate how a charged particle can have kinetic or potential energy as it moves between two charged plates.

- In the diagram on the left, the positive particle is next to the \qquad charged plate, and therefore has \qquad energy. When it is 'released', the electric force pushes (and pulls) the charge towards the negative plate, and the potential energy is converted into \qquad energy.
- In the diagram on the right, the negative particle is in a low energy state, next to the positive plate. An applied force is required to push it towards the negative plate. In this case work is done on the charge, increasing its \qquad energy.

Sample Problem: Speed of an Electron
An electron is accelerated through a potential difference of 5000 V between two parallel plates. Determine...
a) the change in potential energy of the electron.
b) the speed of the electron as a result of the acceleration.
a)

The electric potential and potential difference are scalar quantities. The potential near a positive charge is large and decreases toward zero at $\mathrm{r}=\infty$, while near a negative charge, the potential is less than zero and increases toward zero at $\mathrm{r}=\infty$.

Electric Potential and Electric Field

There is a relationship between the electric potential on charged plates and the electric field strength between them. For the parallel plates shown to the right, the potential difference would be $\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$ which we will abbreviate as V_{ab}.

The electric field between charged parallel plates is given by the equation: $E=\frac{V_{a b}}{d}$ ' V ' is the potential between the plates and ' d ' is the plate separation.

From this equation we see that the units for the electric field can be V / m as well as the earlier unit of N/C.

Therefore: $\quad 1 \frac{\mathrm{~N}}{\mathrm{C}}=1 \frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{C} \times \mathrm{m}}=1 \frac{\mathrm{~J}}{\mathrm{C} \times \mathrm{m}}=1\left(\frac{\mathrm{~J}}{\mathrm{C}}\right) \times \frac{1}{\mathrm{~m}}=1 \frac{\mathrm{~V}}{\mathrm{~m}}$

| 1. Calculate the electric potential relative to infinity for (i) a proton and (ii) an electron 0.50 m away. |
| :--- | :--- |
| i) |
| ii) |
| Solve the problems below. Remember that these will be samples for you to study from |

$\mathrm{W}=1.08 \mathrm{~J}$

Problem Set \#2: Electric Potential and Potential energy Note: *'rd questions have a simulation to help you solve the problem.				
$3{ }^{\text {rld }}$ Ed. Giancolli Pg. 455-57	$4^{\text {th }}$ Ed. Gian	colli Pg. 498-502	$5^{\text {tit }}$ Ed. Gian	colli Pg. 522-25
Questions \# 1,6,9	Questions	\# 1, 5, 8	Questions	\# 1, 5, 8
Problems \# 1, 3-5, 7, 9-13*, 41*, 50	Problems	\# 1-4, 11, 14, 20, 56	Problems	$\begin{aligned} & \# 1,4,6-8,10,13,14,16 \text {, } \\ & 17,56 \end{aligned}$

