Chapter 3: Set Theory and Logic <u>Vocabulary and Symbols</u>

Key

3.1 Types of Sets and Set Notation

Term	Definition	Example
Set	A collection of distinguishable <u>objects</u> . Sets are defined using brackets.	The set of whole numbers is: $W = \{0, 1, 2, 3, \dots, 3\}$
Element	An <u>object</u> in a set	2 is an element of W, the set of whole Numbers
Universal Set	A set of <u>all</u> the elements under consideration for a particular context. (Also called <u>Sample Space</u>)	The universal set (or sample space) of digits is: $D=\{0,1,2,3,4,5,6,7,8,9\}$
Subset	A set whose elements <u>all belong</u> to <u>another</u> <u>set</u> . To show A is a subset of B, we write $A \subset B$ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow	The set of odd digits, $O = \underbrace{51, 3, 5, 7, 93}$ is a subset of <i>D</i> , the set of digits. In set notation, this is written $O \subseteq D$
Complement	All the elements of a universal set that $do \underline{od}$ belong to a subset of it. The complement is denoted with a prime sign A' or a horizontal bar above, \overline{A} .	$O' = \underbrace{20, 2, 4, 6, 8}_{\text{Is the complement of}}$ Is the complement of $O = \{1, 3, 5, 7\}$, a subset of the universal set of digit, <i>D</i> .
Empty Set	A set with <u>no elements</u> The empty set is denoted by { } or Ø.	Q, the set of odd numbers divisible by 2 is the <u>empty</u> set. In set notation, this is written: $Q = \frac{2}{3}$ or $Q = \frac{2}{3}$

Term	Definition	Example
Disjoint	Two or more sets having elements in	The set of even numbers and the set of numbers are disjoint.
Finite set	A set with a <u>Countable</u> number of elements	The set of even numbers less than 10 $E=\frac{2}{2},4,6,83$
Infinite set	A set with an <u>infinite</u> number of elements.	The set of natural numbers, N=Z1,2,3,3
n(X)	The <u>number</u> of elements of the set <i>X</i> .	If the set X is defined as the set of numbers from 1 to 5, $X = \{1,2,3,4,5\}$ n(X) = 5
Mutually Exclusive	Two or more events that <u>connet</u>	The sun rising + the sun setting are mutually exclusive

3.3 Intersection and Union of Two Sets

Term	Definition	Example
Intersection	The set of elements that are <u>COMMON</u> to two or more sets. In set notation, the intersection of sets <i>A</i> and <i>B</i> is: <u>A A</u>	If $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A \cap B = \underbrace{\underline{333}}_{\underline{333}}$
Union	The set of <u>all</u> the elements in two or more sets. In set notation, the union of sets and <i>B</i> is: <u>AUB</u>	If $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A \cup B = \underbrace{\frac{3}{2}, \frac{3}{4}, \frac{4}{5}}_{1,2}$
AIB	Elements in set A but not in set B	$A \setminus B = \frac{2}{3} \frac{1}{5} \frac{3}{5} \frac{4}{5} \frac{4}{5} \frac{3}{5} \frac{4}{5} \frac{4}$

Foundations of Math 12

3.5 Conditional Statements and Their Converse

Term	Definition	Example
Conditional Statement	An <u>"if - then</u> statement	If it is Monday Then it is a school day
Hypothesis	An assumption	From above "It is Monday" is the hypothesis
Conclusion	The <u>result</u> of a hypothesis	From above "It is a school day" is the conclusion
Counterexample	An example that <u>disproves</u> a statement.	From above Thanksgiving Monday is a counterexample (noschool)
Converse	A conditional statement in which the <u>hypothesis</u> and the <u>conclusion</u> are switched.	From above "If it is a school day then it is Monday"
Biconditional	A conditional statement whose converse is also <u>frue</u> . In logic notation, a biconditional statement is written as " p if and only if q "	The statement: "If a number is even then it is divisible by 2" is true. The converse "If a number is divisible by 2, then it is even" is also true. The biconditional statement is: <u>"A number</u> is even if and only if it is divisible by 2"
$p \Rightarrow q$	Notation for <u>"If p, then a</u> " Is read as "p implies q"	
$p \Leftrightarrow q$	Notation for <u>pif and only if q</u> means both the conditional statement and its converse are true.	

Foundations of Math 12

	3.6 The Inverse and the Contrapositive of Conditional Statements		
Term	Definition	Example	
Inverse	A statement that is formed by <u>negating</u> both the hypothesis and the conclusion of a conditional statement.	"If a number is even, then it is divisible by 2." The inverse is: "If a number is not even, then it is not divisible by 2"	
Contrapositive	A statement that is formed by <u>negating</u> both the hypothesis and the conclusion of the <u>converse</u> of a conditional statement.	"If a number is even, then it is divisible by 2." The contrapositive is: <u>"If a</u> <u>number is not divisible</u> by 2, then it is not even"	
$\neg p$	"not" p		