Foundations of Math 12
Chapter 3: Set Theory and Logic
Vocabulary and Symbols

hey

3.1 Types of Sets and Set Notation

Foundations of Math 12

Term	Definition	Example
Disjoint	Two or more sets having no \qquad elements in \qquad common .	The set of even numbers and the set of \qquad odd numbers are disjoint.
Finite set	A set with a countable \qquad number of elements	The set of even numbers less than 10 $E=\{2,4,6,8\}$
Infinite set	A set with an \qquad infinite number of elements.	The set of natural numbers, $N=\{1,2,3, \ldots\}$
$n(X)$	The number \qquad of elements of the set X.	If the set X is defined as the set of numbers from 1 to 5 , $\begin{aligned} & X=\{1,2,3,4,5\} \\ & n(X)=5 \end{aligned}$
Mutually Exclusive	Two or more events that cannot \qquad at the same time.	The sun rising + the sun setting are mutually exclusive

3.3 Intersection and Union of Two Sets

Term	Definition	Example
Intersection	The set of elements that are \qquad to two or more sets. In set notation, the intersection of sets A and B is: \qquad	If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cap B=\{3\}$
Union	The set of all \qquad the elements in two or more sets. In set notation, the union of sets and B is: \qquad $A \cup B$	If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cup B=\{1,2,3,4,5\}$
$A \backslash B$	Elements inset A but not in set B	$\begin{gathered} A \backslash B=\{1,2\} \\ A=35_{B} \end{gathered}$

Foundations of Math 12
3.5 Conditional Statements and Their Converse

Foundations of Math 12
3.6 The Inverse and the Contrapositive of Conditional Statements

