Name \qquad
Date \qquad

Goal: Use factorial notation to solve simple permutation problems.

1. permutation: An arrangement of distinguishable objects in a definite order. For example, the objects a and b have two permutations, \qquad and \qquad .
2. factorial notation: A concise representation ofthe product of consecutive \qquad natural numbers:

$$
\begin{aligned}
& 1!= \\
& 2!= \\
& 3!= \\
& 4!= \\
& n!=n(n-1)(n-2) \ldots(3)(2)(1)
\end{aligned}
$$

LEARN ABOUT the Math

Naomi volunteers after school at a daycare centre in Whitehorse, Yukon. Each afternoon, around 4 p.m., she lines up her group of children at the fountain to get a drink of water.

How many different arrangements of children can Naomi create for the lineup for the water fountain if there are six children in her group?

Example 1: Solving a counting problem where order matters (p. 238)
Determine the number of arrangements that six children can form while lining up to drink.

Example 2: Evaluating numerical expressions involving factorial notation (p. 240)
Evaluate the following:
a) 10 !

$$
\frac{12!}{9!3!}
$$

- 0 ! is defined to be equal to \qquad
- Restrictions on n if n ! is defined:

For example: State the values of n for which each expression is defined, where $n \in I$
a) $(n-3)$!
b) $\frac{n!}{(n-2)!}$

Example 3: Simplifying an algebraic expression involving factorial notation (p. 241) Simplify where $n \in N$.
a) $(n+3)(n+2)$!
b) $\frac{(n+1)!}{(n-1)!}$

Example 4: Solving an equation involving factorial notation (p.242)
Solve $\frac{n!}{(n-2)!}=90$, where $n \in I$

In Summary

Key Ideas

- A permutation is an arrangement of objects in a definite order, where each object appears only once in each arrangement. For example, the set of three objects a, b, and c can be listed in six different ordered arrangements or permutations:

	Position 1	Position 2	Position 3
Permutation 1	a	b	c
Permutation 2	a	c	b
Permutation 3	b	a	c
Permutation 4	b	c	a
Permutation 5	c	a	b
Permutation 6	c	b	a

- The expression n ! is called n factorial and represents the number of permutations of a set of n different objects and is calculated as

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

Need to Know

- In the expression n !, the variable n is defined only for values that belong to the set of natural numbers; that is, $n \in\{1,2,3, \ldots\}$.

HW: 4.2 p. 243-243 \#2, 3, 5, 6, 9, 12, 14 \& 15

