4.2 Introducing Permutations and

Factorial Notation p. 238

Name	
Date	

Goal: Use factorial notation to solve simple permutation problems.

1. permutation: An arrangement of distinguishable objects in a definite order. For example,

the objects *a* and *b* have two permutations, _____ and _____.

2. factorial notation: A concise representation of the product of consecutive

natural numbers:

1! = 2! = 3! = 4! =

 $n! = n(n-1)(n-2) \dots (3)(2)(1)$

LEARN ABOUT the Math

Naomi volunteers after school at a daycare centre in Whitehorse, Yukon. Each afternoon, around 4 p.m., she lines up her group of children at the fountain to get a drink of water.

How many different arrangements of children can Naomi create for the lineup for the water fountain if there are six children in her group?

Example 1: Solving a counting problem where order matters (p. 238)

Determine the number of arrangements that six children can form while lining up to drink.

Example 2: Evaluating numerical expressions involving factorial notation (p. 240) Evaluate the following:

	12!
a) 10!	0121
	9:5:

Example 3: Simplifying an algebraic expression involving factorial notation (p. 241) Simplify where $n \in N$.

a)
$$(n+3)(n+2)!$$
 b) $\frac{(n+1)!}{(n-1)!}$

Example 4: Solving an equation involving factorial notation (p.242)

Solve
$$\frac{n!}{(n-2)!} = 90$$
, where $n \in I$

In Summary

Key Ideas

 A permutation is an arrangement of objects in a definite order, where each object appears only once in each arrangement. For example, the set of three objects a, b, and c can be listed in six different ordered arrangements or permutations:

	Position 1	Position 2	Position 3
Permutation 1	а	b	с
Permutation 2	а	с	b
Permutation 3	b	а	с
Permutation 4	b	с	а
Permutation 5	с	а	b
Permutation 6	с	b	а

 The expression n! is called n factorial and represents the number of permutations of a set of n different objects and is calculated as
 n! = n(n - 1)(n - 2)...(3)(2)(1)

Need to Know

 In the expression n!, the variable n is defined only for values that belong to the set of natural numbers; that is, n ∈ {1, 2, 3,...}.

HW: 4.2 p. 243-243 #2, 3, 5, 6, 9, 12, 14 & 15