Name \qquad
Date \qquad

Goal: Use probability to make predictions.

1. fair game: A game in which all the players are equally likely to win; for example, tossing a coin to get heads or tails is a fair game.

- The theoretical probability of event A is represented as:
- where $n(A)$ is the number of \qquad
- $n(S)$ is the total number of outcomes in the
\qquad where all outcomes are
\qquad .
- The experimental probability of event A is represented as:
- where $n(A)$ is the number of times \qquad
- $n(T)$ is the total number of trials, T, \qquad
- The probability of an even can range from \qquad (impossible) to \qquad (certain).

You can express probability as a \qquad , a \qquad , or a
\qquad .

Example 1: Ross and Rachel flip a coin to see who gets to pick a movie. Rachel wins if she flips a head.
a. What is the theoretical probability of getting a head?
b. Simulate flipping a coin 1000 times and record the number of times a head appears. From your simulation, what is the experimental probability of getting a head?
c. Is the game fair?

Example 2: Rachel now decides that they will toss 4 coins-a nickel, a dime, a quarter, and a loonie. If all 4 land on heads, or all 4 land on tails, Ross wins. Otherwise, Rachel wins. Create a sample space to show all possible outcomes. Determine the probability of Ross winning and of Rachel winning. Is the game fair?

HW: 5.1 p. 303 \#2 \& 3

