Name \qquad
Date \qquad

Goal: Understand and solve problems that involve mutually exclusive and nonmutually exclusive events.

1. mutually exclusive: Two or more events that cannot occur at the same time; for example, the Sun rising and the Sun setting are mutually exclusive events.

Probabilities of Events A or B

General Case:
$\mathrm{P}(\mathrm{A}$ or B$)=$

Mutually Exclusive events:
$\mathrm{P}(\mathrm{A}$ or B$)=$

Note: When the two events are mutually exclusive,
$n(A \cap B)$ \qquad ; therefore, $P(A \cap B)$ \qquad

Example 1: One card is randomly drawn from a deck of 52 cards.

Define the following events:
S : The card is a spade
R : The card is red
F : The card is face card
Identify the events S, R, and F on the sample space.

Which of these three events are mutually exclusive?

	Club	Spade	Heart	Diamond
K	*	*	*	*
Q	*	*	*	*
J	*	*	*	*
10	*	*	*	*
9	*	*	*	*
8	*	*	*	*
7	*	*	*	*
6	*	*	*	*
5	*	*	*	*
4	*	*	*	*
3	*	*	*	*
2	*	*	*	*
A	*	*	*	*

a. Determine the following probabilities
$P(S)=$
$P(R)=$
$P(S$ and $R)=$
$\mathrm{P}(\mathrm{S}$ or R$)=$
$P(S)=\quad P(F)=$
$P(S$ and $F)=$
$P(S$ or $F)=$
b. Now determine the following probabilities using the formulas
$P(S$ or $R)=$
$P(S$ or $F)=$

Example 2: Using a Venn diagram to solve a probability problem that involves two events (p. 332)

A school newspaper published the results of a recent survey.
a. Are skipping breakfast and skipping lunch mutually exclusive?

Eating Habits:
 Student Survey Results

- 62% skip breakfast
- 24% skip lunch
- 22% eat both breakfast and lunch
b. Determine the probability that a randomly selected student skips breakfast but not lunch.
c. Determine the probability that a randomly selected student skips at least one of breakfast or lunch.

Example 3: Wilma submits bids on two web design projects. She thinks she has 70% chance of getting the first project, but just a 50% chance of getting the second. She puts only a 15% chance on getting neither of the two projects. Find the probability that she gets:
a. both projects
b. at least one of the two projects

c. only the first project

d. only one of the two project

In Summary
Key Ideas

- You can represent the favourable outcomes of two
mutually exclusive events, A and B, as two disjoint sets.
You can represent the probability that either A or B will
occur by the following formula:
$P(A \cup B)=P(A)+P(B)$
- You can represent the favourable outcomes of two
non-mutually exclusive events, A and B, as two
intersecting sets.
You can represent the probability that either A or B will
occur by this formula:
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
An alternative formula is
$P(A \cup B)=P(A \backslash B)+P(B \backslash A)+P(A \cap B)$
When the two events are mutually exclusive, both formulas
are equivalent,
which results in
n $A \cap B)=0$
(no common elements)
Need to Know
You can use the Principle of Inclusion and Exclusion, which is used to
count the elements in the union of two sets, to determine the probability
of non-mutually exclusive events.

