Name

Date

Goal: Understand and solve problems that involve mutually exclusive and nonmutually exclusive events.

1. **mutually exclusive**: Two or more events that cannot occur at the same time; for example, the Sun rising and the Sun setting are mutually exclusive events.

Probabilities of Events A or B	
General Case:	
P(A or B) =	
Mutually Exclusive events:	[]
P(A or B) =	$\bigcirc\bigcirc$
Note: When the two events are mutually exclusive,	
$n(A \cap B)$; therefore, $P(A \cap B)$	

Example 1: One card is randomly drawn from a deck of

52 cards.

Define the following events:

- S: The card is a spade R: The card is red
- F: The card is face card

Identify the events S, R, and F on the sample space.

Which of these three events are mutually exclusive?

	Club	Spade	Heart	Diamond
Κ	*	*	*	*
Q	*	*	*	*
J	*	*	*	*
10	*	*	*	*
9	*	*	*	*
8	*	*	*	*
7	*	*	*	*
6	*	*	*	*
5	*	*	*	*
4	*	*	*	*
3	*	*	*	*
2	*	*	*	*
А	*	*	*	*

a. Determine the following probabilities

$$P(S) = P(R) = P(S \text{ and } R) = P(S \text{ or } R) =$$

$$P(S) = P(F) = P(S \text{ and } F) = P(S \text{ or } F) =$$

b. Now determine the following probabilities using the formulas

P(S or R) =

P(S or F) =

Example 2: Using a Venn diagram to solve a probability problem that involves two events (p. 332)

A school newspaper published the results of a recent survey.

a. Are skipping breakfast and skipping lunch mutually exclusive?

Eating Habits: Student Survey Results

- 62% skip breakfast
- 24% skip lunch
- 22% eat both breakfast and lunch

b. Determine the probability that a randomly selected student skips breakfast but not lunch.

c. Determine the probability that a randomly selected student skips at least one of breakfast or lunch.

Example 3: Wilma submits bids on two web design projects. She thinks she has 70% chance of getting the first project, but just a 50% chance of getting the second. She puts only a 15% chance on getting neither of the two projects. Find the probability that she gets:

a. both projects

b. at least one of the two projects

c. only the first project

d. only one of the two project

