Name \qquad
Date \qquad

Goal: Understand and solve problems that involve dependent events.

1. dependent events: Events whose outcomes are affected by each other; for example, if two cards are drawn from a deck without replacement, the outcome of the second event depends on the outcome of the first event (the first card drawn).
2. conditional probability: The probability of an event occurring given that another event has already occurred.

INVESTIGATE

Situation \#1: Drawing two balls from the pot, without replacement.
A ball is randomly selected from the pot and is not replaced. Then a second ball is drawn.
Define the flowing events:
A: The first ball is white
B : The second ball is white

Find: $P(A)=$
$P(B$ given that the first ball drawn is white $)=$
$P(A$ and $B)=$

Situation \#2: Drawing two balls from the pot, with replacement.
A ball is randomly selected from the pot and is replaced. Then a second ball is drawn. Define the flowing events:

A: The first ball is white
B : The second ball is white

Find: $P(A)=$
$P(B$ given that the first ball drawn is white $)=$
$\mathrm{P}(\mathrm{A}$ and B$)=$

Events A and B are independent because

Probabilities of Events A and B

General Case:

$$
P(A \cap B)=
$$

"probability of A and B"

Equivalently:

$$
P(B \mid A)=
$$

"probability of B given A"
Note: Events A and B are independent if $P(B \mid A)=P(B)$
For independent events: $P(A \cap B)=$

Example 1: Two cards are drawn without replacement from a shuffled deck of 52 cards.
Define the following events:
A: The first card is a face card.
B : The second card is a face card.

Determine:
a) $P(A \cap B)$
b) $P\left(A^{\prime} \cap B\right)$

Example 2: According to a survey, 91% of Canadians own a cellphone. Of these people, 42\% have a smartphone. Determine, to the nearest percent, the probability that any Canadian you met during the month in which the survey was conducted would have a smartphone.

Example 3: Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probability that
a) both cards are hearts?
b) neither card is a heart?
c) exactly one of the two cards is a heart?
d) both cards are aces?

Example 4: A company has two factories that make computer chips. Suppose 70\% of the chips come from Factory 1 and 30\% come from Factory 2. In Factory 1, 25\% of the chips are defective; in Factory 2, 10\% of the chips are defective.
a) Suppose it is not known from which factory a chip came. What is the probability that the chip is defective?
b) Suppose a defective chip is discovered.

What is the probability that the chip came from Factory 1 ?

In Summary

Key Ideas

- If the probability of one event depends on the probability of another event, then these events are called dependent events. For example, drawing a heart from a standard deck of 52 playing cards and then drawing another heart from the same deck without replacing the first card are dependent events.
- If event B depends on event A occurring, then the conditional probability that event B will occur, given that event A has occurred, can be represented as follows:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

Need to Know

- If event B depends on event A occurring, then the probability that both events will occur can be represented as follows:

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

- A tree diagram is often useful for modelling problems that involve dependent events.
- Drawing an item and then drawing another item, without replacing the first item, results in a pair of dependent events.

HW: 5.5 p. 350-353 \#2-5 \& 7

