6.2 Characteristics of Equations of

Polynomial Functions p. 384

Name
Date \qquad Goal: Make connections between the coefficients and constant in the equation of the function and the characteristics of the graph of the function.

Standard Form
\qquad

Standard Form

Leading Coefficient

Constant

Linear Polynomials

Quadratic Polynomials

Cubic Polynomials

Key Ideas
When a polynomial function is in standard form:

- The maximum number of \boldsymbol{x}-intercepts the graph may have is \qquad to the
\qquad of the function.
- The maximum number of turning points a graph may have is \qquad to
\qquad than the \qquad of the function.
- The degree and leading co-efficient of the equation of a polynomial function indicate the \qquad of the graph of the function.
- The constant term in the equation of a polynomial function is the \qquad of its graph.

Linear and Cubic polynomial functions have similar end behaviours.

Degree: Leading Co-efficient: End Behaviour:	Degree: Leading Co-efficient: End Behaviour:
Quadratic polynomial functions have did	end behaviours to those of linear and cubic.
Degree: \qquad Leading Co-efficient: \qquad End Behaviour: \qquad	Degree: Leading Co-efficient: End Behaviour:

HW 6.2 pp. 393-397 \#1, 2, 4, 5, 6, 7, 8 \& 14

