Date

Goal: Determine the linear function that best fits a set of data, and use the function to solve a problem.

1. line of best fit: A straight line that best approximates the trend in a scatter plot.
2. regression function: A line or curve of best fit, developed through a statistical analysis of data.
3. interpolation: The process used to estimate a value within the domain of a set of data, based on a trend.
4. extrapolation: The process used to estimate a value outside the domain of a set of data, based on a trend.

Example 1: The table shows how the outside air pressure changes as an airplane rises after takeoff.
a. Create a scatter plot on the graphing calculator
b. Plot the points on a graph

X
Altitude (km) Air Pressure (kPa) $\mathbf{0}$ 101 $\mathbf{1}$ 80 $2 \boldsymbol{3} \boldsymbol{l}$ 74 $\mathbf{3}$ 62 $\mathbf{4}$ 55 $\mathbf{5}$ 46

c. What term best describes the trend?
liver
d. Write the linear regression equation of the data $y=a-x+b$

$$
y=-10.34 x+95.52
$$

e. What will the air pressure be at an altitude of 6 km ?

$$
33.5 \mathrm{kPa} \text { @ } 6 \mathrm{~km} \text { extrapolation }
$$

f. At what altitude would the airplane be if the pressure was 18.5 kPa ?

Example 2: The one-hour record is the farthest distance travelled by bicycle in 1 hour. The table below shows the world-record distances and the years after 1990.
(Use Window Settings: $X_{m i n}=-1, X_{m a x}=30, Y \min =-10, Y_{\max }=110$)

Years after $1990(\mathbf{y r})$	6	8	9	12	13	14	17	18	19
Distance (km)	78.04	79.14	81.16	82.60	83.72	84.22	86.77	87.12	90.60

a. Create a scatter plot on the graphing calculator
b. Plot the points on a graph

One -

c. Write the linear regression equation of the data.

$$
y=0.858 x+72.643
$$

d. Based on this data, what was the world-record distance in 2000?

$$
81.23 \mathrm{kM}
$$

e. Based on this data, when might the world-record distance be 95 km ?

$$
26 \text { years after } 1990 \rightarrow 2016
$$

WW: 6.3 pp.407-412 \#4, 5, 6, 7, 11 \& 13

