Connected Masses and Pulleys

For these problems we need a sign convention; let the direction of movement (in this case, the direction of the net force) be positive.

Here is a standard Physics 11 problem (with a wrinkle): two connected masses hang over a pulley, as shown below. Determine the tension in the rope.

Ignore tension for now; first, find what unbalanced force and acceleration acts on the whole system.
\rightarrow examine the f.b.d. of the system:

$$
\rightarrow \mathrm{F}_{\mathrm{Net}}=19.6-9.8=9.8 \mathrm{~N}
$$

$$
\rightarrow \mathrm{F}_{\mathrm{Net}}=\mathrm{m}_{\mathrm{T}} \mathrm{a} \quad \rightarrow 9.8=\mathbf{3 . 0 a} \quad \rightarrow \mathrm{a}=\mathbf{3 . 3} \mathbf{~ m} / \mathrm{s}^{2}
$$

$>$ Now find the tension in the string by examining a f.b. diagram of only one of the two masses. If we choose the 1.0 kg mass, we must recognize its upward acceleration and net force, which means:

$$
\begin{aligned}
& \rightarrow \mathrm{F}_{\mathrm{Net}}=\mathrm{ma}=1.0(3.3)=3.3 \mathrm{~N} \\
& \rightarrow \mathrm{~F}_{\mathrm{Net}}=\mathrm{F}_{\mathrm{T}}-9.8 \\
& \rightarrow \mathbf{3 . 3}=\mathrm{F}_{\mathrm{T}}-9.8 \quad \rightarrow \mathrm{~F}_{\mathrm{T}}=13 \mathrm{~N}
\end{aligned}
$$

Note that the same answer would result from analyzing only the 2.0 kg mass. In this case, the acceleration is downward, so $\mathbf{F}_{\text {Net }}=\mathbf{1 9 . 6}-\mathbf{F}_{\mathbf{T}}$. I'll leave this one for you to prove.

Example \#13. Two masses are suspended by a single pulley, and hang on each side of it. One mass is 4.0 kg and the other is 6.0 kg . Find:
a) the acceleration of the system.
b) the tension in the rope.
(see Dynamics Ex 13 for answer)

Example \#14. In the diagram to the right, the weight of the 2.0 kg mass exerts a force on the system causing both masses to move. Given the information listed, find: (a) the acceleration of the system and (b) the tension in the string.

(see Dynamics Ex 14 for answer)

Example \#15. Two hanging masses are attached to one horizontal mass. Note that the two tensions are not the same.

a) What is the unbalanced or net force?
b) What is the acceleration of the system?
c) What is the tension in each rope?

Example \#16. Given the information in the diagram to the right, find the unknown mass of the cart.
(see Dynamics Ex 16 for answer)

Finally, consider a coupled mass system, one on an incline and one hanging.
Example \#17. In the diagram below, a 4.0 kg mass rests on a 30° frictionless slope and is pulled by a 3.0 kg mass connected to it over a pulley by a cord. What is the acceleration of the system and the tension in the cord?

\rightarrow Next step: to find the acceleration, consider the whole system. Note which force is greater; that will be the direction of the net force and the acceleration.

\rightarrow Finally, to find the tension, analyze just one mass. Try mass $2(3.0 \mathrm{~kg})$; it has fewer forces acting on it so is probably easier to work with.

Example \#18. Similar problem as \#17, but with friction acting on the 15 kg mass. Note that friction acts in the opposite direction to the largest force. Find the acceleration by first determining the direction of motion.

(see Dynamics Ex 18 for answer)

