

Numbers, Radicals, and Exponents LESSON THREE - Squares, Cubes, and Roots Lesson Notes

Introduction Perfect Squares, Perfect Cubes, and Roots.
a) What is a perfect square? Draw the first three perfect squares.

b) What is a perfect cube? Draw the first three perfect cubes.

c) Complete the table showing all perfect squares and perfect cubes up to 10 . The first three are completed for you.

Number	Perfect Square	Perfect Cube
1	$\mathbf{1}^{2}=1$	$1^{3}=1$
2	$\mathbf{2}^{2}=4$	$\mathbf{2}^{3}=8$
3	$3^{2}=9$	$3^{3}=27$

d) What is a square root? Find the square root of 36 .
i) Using a geometric square.
ii) Using the formula $\mathrm{A}=\mathrm{s}^{2}$

e) What is a cube root? Find the cube root of 125.
i) Using a geometric cube.
ii) Using the formula $V=s^{3}$

$5^{2}=25$
$5^{3}=125$

Numbers, Radicals, and Exponents LESSON THREE - Squares, Cubes, and Roots Lesson Notes

Example 1

Evaluate each power, without using a calculator.
a) 3^{2}
b) $(-3)^{2}$
c) -3^{2}
d) 3^{3}
e) $(-3)^{3}$
f) -3^{3}

Example 2 Evaluate each expression, without using a calculator.
a) $2(2)^{3}$
b) $-2(-4)^{2}$
c) $1-5^{2}$
d) $\frac{1}{4^{3}}$
e) $\frac{1}{2^{2}+2^{3}}$
f) $\frac{5(-2)^{3}}{-2^{2}}$

Example 3
Evaluate each root using a calculator.
a) $\sqrt{8}$
b) $\sqrt{-8}$
c) $\sqrt[3]{8}$
d) $\sqrt[3]{-8}$
e) What happens when you evaluate $\sqrt[4]{-8}$ and $\sqrt[5]{-8}$?

Is there a pattern as to when you can evaluate the root of a negative number?

Example 4
Evaluate each expression, without using a calculator.
a) $2 \sqrt{49}+\sqrt{36}$
b) $\frac{\sqrt{25}-\sqrt[3]{8}}{3^{2}}$
c) $\frac{1-\sqrt{36}}{5(-2)^{2}}$
d) $\frac{3 \sqrt[3]{27}-(-4)^{2}}{-3^{2}-(-1)^{2}}$

Numbers, Radicals, and Exponents LESSON THREE - Squares, Cubes, and Roots Lesson Notes

Example 5

The area of Edmonton is $684 \mathrm{~km}^{2}$
a) If the shape of Edmonton is approximated to be a square, how wide is the city?

b) If the shape of Edmonton is approximated to be a circle, how wide is the city?

Example 6 The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$
a) If a sphere has a radius of 9 cm , what is the volume?

b) If a sphere has a volume of approximately $5000 \mathrm{~cm}^{3}$, what is the radius?

Numbers, Radicals, and Exponents LESSON THREE - Squares, Cubes, and Roots Lesson Notes
$5^{2}=25$

Example 7

The amount of time, T, it takes for a pendulum to swing back and forth is called the period.
The period of a pendulum can be calculated with the formula: $T=2 \pi \sqrt{\frac{l}{9.8}}$
a) What is the period of the pendulum if the length, l, is 1.8 m ?
b) What is the length of the pendulum if the period is 2.4 s ?

$5^{3}=125$

Numbers, Radicals, and Exponents LESSON THREE - Squares, Cubes, and Roots

Lesson Notes

Example 8

The total volume of gold mined throughout history is approximately $8340 \mathrm{~m}^{3}$.
a) If all the gold was collected, melted down, and recast as a cube, what would be the edge length?

b) If the density of gold is $19300 \mathrm{~kg} / \mathrm{m}^{3}$, what is the mass of the cube?

The density formula is density $=\frac{\text { mass }}{\text { volume }}$
c) In $2011,1 \mathrm{~kg}$ of gold costs about $\$ 54000$. What is the value of all the gold ever extracted?

