Math 10C: Numbers, Radicals, and Exponents PRACTICE EXAM

1. $1.273958 \ldots$ belongs to:
A. The set of integers.
B. The set of rationals.
C. The set of irrationals.
D. None of the above.
2. $7 . \overline{4}$ belongs to:
A. The set of integers.
B. The set of rationals.
C. The set of irrationals.
D. None of the above.
3. $-\frac{2}{3}$ belongs to:
A. The natural number set.
B. The set of integers.
C. The set of rationals.
D. Both B and C.
4. $\sqrt{-2}$ belongs to:
A. The set of integers.
B. The set of rationals.
C. The set of irrationals.
D. None of the above.
5. Using a calculator, $\sqrt{8}, \sqrt[3]{-6},-\sqrt{3}$, and $2 \sqrt[3]{2}$ are ordered from least to greatest as:
A. $-\sqrt{3}, \sqrt[3]{-6}, 2 \sqrt[3]{2}, \sqrt{8}$
B. $-\sqrt{3}, \sqrt[3]{-6}, \sqrt{8}, 2 \sqrt[3]{2}$
C. $\sqrt[3]{-6},-\sqrt{3}, 2 \sqrt[3]{2}, \sqrt{8}$
D. $\sqrt[3]{-6},-\sqrt{3}, \sqrt{8}, 2 \sqrt[3]{2}$
6. A prime number is:
A. 0
B. 1
C. 13
D. Both B and C.
7. The least common multiple of 48 and 180 is:
A. 144
B. 180
C. 540
D. 720
8. The greatest common factor of 52 and 78 is:
A. 4
B. 13
C. 26
D. 52
9. A fence is being constructed with posts that are 12 cm wide. A second fence is being constructed with posts that are 15 cm wide. If each fence is to be the same length, what is the shortest fence that can be constructed?
A. 30 cm
B. 60 cm
C. 90 cm
D. 120 cm
10. A box of sugar cubes has a length of 156 mm , a width of 104 mm , and a height of 39 mm . What is the edge length of one sugar cube? Assume the box is completely full and the manufacturer uses sugar cubes with the largest possible volume.

A. 2 mm
B. 3 mm
C. 13 mm
D. 39 mm
11. The expression $\frac{3 \sqrt[3]{27}-(-4)^{2}}{-3^{2}-(-1)^{2}}$ is equal to:
A. $-\frac{7}{8}$
B. $\frac{7}{8}$
C. $-\frac{7}{10}$
D. $\frac{7}{10}$
12. The area of Edmonton is $684 \mathrm{~km}^{2}$. If the shape of Edmonton is approximated to be a square, how wide is the city?
A. 26.2 km
B. 30.0 km
C. 52.4 km

D. 342 km
13. The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. If the volume of a sphere is approximately $5000 \mathrm{~cm}^{3}$, what is the radius?
A. 10.6 cm
B. 34.5 cm
C. 50.0 cm
D. 524 cm

14. The amount of time, T, it takes for a pendulum to swing back and forth is called the period.

The period of a pendulum can be calculated with the formula: $T=2 \pi \sqrt{\frac{l}{9.8}}$ What is the length of the pendulum if the period is 2.4 s ?
A. 1.2 m
B. 1.4 m
C. 3.1 cm
D. 12.7 cm

15. The index of $\sqrt{5}$ is:
A. 1
B. 2
C. 2.24
D. 5
16. $\sqrt{32}$, in its most reduced form, is equivalent to the mixed radical:
A. $4 \sqrt{2}$
B. $4 \sqrt{3}$
C. $2 \sqrt{8}$
D. $2 \sqrt{16}$
17. $\sqrt[3]{81}$, in its most reduced form, is equivalent to the mixed radical:
A. $2 \sqrt[3]{3}$
B. $3 \sqrt[3]{3}$
C. $2 \sqrt[3]{9}$
D. $3 \sqrt[3]{9}$
18. $2 \sqrt[4]{3}$ is equivalent to the entire radical:
A. $\sqrt{24}$
B. $\sqrt{48}$
C. $\sqrt[4]{24}$
D. $\sqrt[4]{48}$
19. $\frac{3}{4} \sqrt{32}$, in its most reduced form, is equivalent to the mixed radical:
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. $3 \sqrt{8}$
D. $3 \sqrt{8}$
20. $\frac{3 \sqrt[3]{72}}{\sqrt{64}}$, in its most reduced form, is equivalent to the mixed radical:
A. $\frac{3 \sqrt[3]{8}}{8}$
B. $\frac{9 \sqrt[3]{8}}{8}$
C. $\frac{5 \sqrt[3]{9}}{8}$
D. $\frac{3 \sqrt[3]{9}}{4}$
21. $\left(\frac{2}{3}\right)^{\frac{3}{2}}$ is equivalent to the radical:
A. $\left(\sqrt[3]{\frac{2}{3}}\right)^{2}$
B. $\left(\sqrt{\frac{2}{3}}\right)^{3}$
C. $\left(\sqrt[3]{\frac{3}{2}}\right)^{2}$
D. $\left(\sqrt{\frac{3}{2}}\right)^{3}$
22. $\left(\sqrt[3]{\frac{5}{7}}\right)^{2}$ is equivalent to the power:
A. $\left(\frac{2}{3}\right)^{\frac{5}{7}}$
B. $\left(\frac{7}{5}\right)^{\frac{2}{3}}$
C. $\left(\frac{5}{7}\right)^{\frac{2}{3}}$
D. $\left(\frac{5}{7}\right)^{\frac{3}{2}}$
23. $\left(\frac{2 a^{2}}{b}\right)^{3}$ is equivalent to:
A. $\frac{2 a^{6}}{b^{3}}$
B. $\frac{6 a^{6}}{b^{3}}$
C. $\frac{8 a^{6}}{b^{3}}$
D. $\frac{8 a^{8}}{b}$
24. $\frac{(3 a b)(2 a b)^{2}}{2(a b)^{3}}$ simplifies to:
A. 1
B. $\frac{18}{a b}$
C. 3
D. 6
25. $\left(\frac{2 a}{b}\right)^{2}(a b)^{0}\left(-\frac{1}{2}\right)^{3}$ expands to:
A. 1
B. $-\frac{2 a^{2}}{b^{2}}$
C. $-\frac{a^{2}}{2 b^{2}}$
D. $\frac{a^{2}}{2 b^{2}}$
26. The value of m in the equation $\frac{a^{m} \times a^{2 m}}{a}=a^{20}$ is:
A. 5
B. 7
C. 9
D. 11
27. $\left(\frac{3^{-1}}{5}\right)^{-2}$ simplifies to:
A. $\frac{9}{25}$
B. $\frac{25}{9}$
C. $\frac{1}{225}$
D. 225
28. $\left(\frac{a^{-4}}{(a b)^{2}}\right)^{\frac{3}{2}}$ simplifies to:
A. $\frac{a^{2}}{b^{3}}$
B. $\sqrt{\frac{a^{3}}{b^{6}}}$
C. $\frac{1}{a^{9} b^{3}}$
D. $\sqrt[3]{\frac{1}{b^{2}}}$
29. $\left(a^{5}\right)\left(a^{-\frac{1}{2}}\right)$ simplifies to:
A. $(\sqrt{a})^{9}$
B. $(\sqrt[9]{a})^{2}$
C. $a^{-\frac{2}{5}}$
D. $a^{-\frac{5}{2}}$
30. The expression $\frac{2^{-3}+2^{-4}}{2^{-5}}$ is equivalent to:
A. 2
B. 4
C. 6
D. 8
31. $\sqrt{\sqrt[3]{a}}$ simplifies to:
A. $a^{\frac{1}{6}}$
B. $a^{\frac{1}{5}}$
C. $a^{\frac{1}{4}}$
D. $a^{\frac{2}{3}}$
32. A culture of bacteria contains 5000 bacterium cells. This particular type of bacteria doubles every 8 hours. If the amount of bacteria is represented by the letter A, and the elapsed time (in hours) is represented by the letter t, the formula used to find the amount of bacteria as time passes is:

$$
A=5000(2)^{\frac{t}{8}}
$$

The quantity of bacteria in the culture after 16 hours is:
A. 5000
B. 8000
C. 10000
D. 20000
33. Over time, a sample of a radioactive isotope will lose its mass. The length of time for the sample to lose half of its mass is called the half-life of the isotope. Carbon-14 is a radioactive isotope commonly used to date archaeological finds. It has a half-life of 5730 years. If the initial mass of a Carbon- 14 sample is 88 g , the formula used to find the mass remaining as time passes is given by:

$$
A=88\left(\frac{1}{2}\right)^{\frac{t}{5730}}
$$

where A is the amount (grams), and t is time (years) since the mass of the sample was measured. If the mass of the sample is measured 10000 years in the future, the percentage of the original mass that remains is:
A. 14%
B. 20%
C. 26%
D. 30%

Numbers, Radicals, and Exponents - ANSWER KEY Video solutions are in italics.

1. C Number Sets, Example 1c
2. B Number Sets, Example $1 e$
3. C Number Sets, Example 1g
4. D Number Sets, Example 3
5. C Number Sets, Example 4b
6. C Primes, LCM, and GCF, Example 1
7. D Primes, LCM, and GCF, Example 2c
8. C Primes, LCM, and GCF, Example 3c
9. B Primes, LCM, and GCF, Example 4a
10. C Primes, LCM, and GCF, Example 5c
11. D Squares, Cubes, and Roots, Example 4d
12. A Squares, Cubes, and Roots, Example 5a
13. A Squares, Cubes, and Roots, Example 6b
14. B Squares, Cubes, and Roots, Example 7b
15. B Radicals, Introduction (b)
16. A Radicals, Example 1b
17. B Radicals, Example 2d
18. D Radicals, Example 4d
19. B Radicals, Example 6c
20. D Radicals, Example $6 e$
21. B Radicals, Example $7 e$
22. C Radicals, Example $8 e$
23. C Exponents I, Example 1c
24. D Exponents I, Example $2 f$
25. C Exponents I, Example 3e
26. B Exponents I, Example 4d
27. D Exponents II, Example 1e
28. C Exponents II, Example $2 e$
29. A Exponents II, Example 4a
30. C Exponents II, Example 5b
31. A Exponents II, Example 6c
32. D Exponents II, Example 7
33. D Exponents II, Example 8

Math 10C Practice Exam: Tips for Students

- Every question in the practice exam has already been covered in the Math 10C workbook. It is recommended that students refrain from looking at the practice exam until they have completed their studies for the unit.
- Do not guess on a practice exam. The practice exam is a self-diagnostic tool that can be used to identify knowledge gaps. Leave the answer blank and study the solution later.

