For all calculation questions:

- identify the formula you are using
- show your work
- place your answer with correct units in a box

1. State Newton's three laws of motion and give an example from your life of each.
2. Find the force of gravity at the earth's surface on a 5.7 kg mass.
3. What is the mass of an object which weighs 79 N on the Earth's surface?
4. What is the gravitational field strength ('g) on Venus if its mass is $4.88 \times 10^{24} \mathrm{~kg}$ and its radius is $6.073 \times 10^{6} \mathrm{~m}$.
5. If the force of gravity on an object at the earths surface is 3200 N , what is the force of gravity when the object is 1.5 earth radii into space?
6. What is the gravitational attraction between a man with a mass of 110 kg and his wife (mass of 55 kg) when they are just 15 cm apart?
7. How much force is required to pull a 75 kg crate along a floor if the coefficient of friction is 0.26 ?
8. What is the coefficient of friction if a 7 N force is required to pull a 2.3 kg object along a floor at a constant velocity?
9. A 30 N force applied to a rubber band causes a stretch of 5.4 cm . What is the spring constant?
10. How much will a fishing line stretch when a 65 N force is applied to a 1 m length? $\left(k=14.2 \frac{\mathrm{~N}}{\mathrm{~m}}\right)$
11. A 2.1 kg toy is pulled by a force of 4 N . If the coefficient of friction is 0.135 and the toy starts from rest, how far will it travel in the first 3 seconds?
12. A 2200 kg car traveling $75 \mathrm{~km} / \mathrm{h}$ on an icy, level road approaches an intersection. The brakes lock and the car skids to a stop. If the coefficient of friction between the road and tires is 0.078 , what is the minimum distance in which the car will stop? (answer in meters)
13. Two boys pull on a 60 kg sled. One pulls with 700 N to the right while the other pulls with 640 No to the left. What will be the acceleration of the sled?
14. Blocks A, B, and C are joined by ropes. A force of 90 N is applied to C. The coefficient of friction is 0.355 .

a) What is the net force on the boxes?
b) What is the acceleration of the boxes?
c) What is the tension in the rope joining box B to A ?
15. A block with a mass of 7.4 kg is sliding along a frictionless surface at $9 \mathrm{~m} / \mathrm{s}$. If it encounters a rough surface which exerts a force of friction of 7 N , how long will it take to come to a stop?
16. Calculate the unbalanced force acting on a 12.7 kg object that accelerates from 5 m / s to $18 \mathrm{~m} / \mathrm{s}$ in 7.3 sec .
17. A fully loaded rocket has a mass of $2.63 \times 10^{6} \mathrm{~kg}$. Its engines have a thrust of $2.81 \times 10^{7} \mathrm{~N}$.
a) Calculate the force of gravity on the rocket.
b) What is the acceleration of the rocket as it blasts off?
18. A 625 N student (as weighed in a physics lab) wants to see how his weight is affected by his riding in an elevator. Suppose this student is standing on a scale that reads in Newtons and is travelling up but accelerating at $-1.4 \mathrm{~m} / \mathrm{s}^{2}$. What value will the scale read ?
19. A 3.4 kg object is pulled along a horizontal surfaces as shown in the diagram by a horizontal force of 5.2 N . If the object is accelerating at a rate of $1.1 \mathrm{~m} / \mathrm{s}^{2}$ to the right, what is the force of friction acting on the object?

20. Jeff (mass 87 kg) and Kevin (mass 92 kg) are standing on the same surface ($\mu=0.23$). Jeff pushes Kevin with a force of 1000 N. Determine the acceleration Jeff and Kevin will experience after the push.
