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Centripetal Motion and Gravity 
Consider a satellite orbiting the Earth. It does so in a very nearly circular path, because: 

• The spacecraft attempts to follow a “horizontal” straight-line path that is tangent 
to the curvature of the Earth. 

• The Earth exerts a force of gravity on the satellite, pulling it downward much like 
an object that is thrown horizontally from a cliff. 

• On a large scale, the Earth’s surface is not flat; it curves away so that Fg always 
acts radially, i.e., into the center of the planet 

• The balance between the inertia of the satellite attempting to go “straight” and the 

force of gravity Fg that pulls perpendicular to its motion causes the satellite to 
travel in its circular path around the planet, maintaining its elevation above Earth’s 
surface. Note though:  

- if the satellite were to travel too fast, it would pull away from the Earth and 
no longer follow a circular path. 

- if the satellite were travelling too slow, it would also no longer follow a 
circular path; in this case, it would eventually fall into the Earth. 

 
Stable, relatively circular orbits occur commonly in space. For example: 

� natural satellites (called ‘moons’) orbit a central mass planet. 
� planets orbit a central mass star (like the Sun). 
� stars orbit the central matter of galaxies. 

 

In each case, the central mass ‘M’ supplies the force of gravity to maintain the circular 
orbit. The net force on the orbiting mass is a centripetal force, so we can state that, for 
any stable orbiting body:    

  Fc = Fg  
 
The next page illustrates the nature of a stable orbit.
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   orbital mass m          orbital velocity v (tangent to  

                 curvature of mass M) 

        central mass M               

             force of gravity Fg (acts 
               radially into center of 

             mass M) 
                   
 
 
 
 
 
 
 

radius of orbit R              orbital circular 

(Note: R equals                      path 
Earth radius + altitude) 
 

 
The velocity for a stable satellite orbit can be determined in the following way: 
 

� 
In this case, gravity provides the centripetal force; that is,   F

c = F
g   

 

� Substitute in the formulas: 
mv 2

R
 = 

GMm

R2
   

� cancel out orbital mass ‘m’ to get     
v 2

R
 = 

GM

R2
 

 

� this tells us that   ac = g   � the centripetal acceleration of the satellite must 
 equal the gravitational field strength at that altitude!  

 

� note that ‘R’ also cancels once, so that   v = 
GM

R
   

 
From these equations we see the following relationships: 

• Fg αααα v
2
 

• Fg αααα 1/R 

• v αααα 
1

R
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Example 6:  

(a) Determine the stable parking orbit velocity for a surveying satellite located   

230 km above the moon’s surface. 

(b) If that orbital radius were reduced by one-tenth, by what factor would the 

orbiting speed increase?   

 

      (see Gravitation Ex 6 for answer)   
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Centripetal Force 
Examine Newton’s 1

st
 and 2

nd
 Laws of motion: 

� Newton’s 1
st
 Law of Inertia states that, in the absence of an external, 

unbalanced force, any object will keep on doing what it’s already doing. 

This means that a stationary object will remain stationary, and an object 

travelling at speed in one direction will continue on in the same direction at 

constant speed. 

� The 2
nd
 law explains that if an unbalanced or net force does exist on an 

object, that object will accelerate, with the formula relating the two 

quantities being  FNet = ma. 

 

In Physics 11, you learned that when an unbalanced force acts on the object and 

the object accelerates, it must either speed up or slow down. 

 

But hold on: an unbalanced force can also cause an object to simply change 

direction. For example, if a hockey puck slides along the ice at a constant speed 

and hits the goal post, the force that the post exerts on the puck causes the puck to 

change direction. Ignoring the friction of puck-on-ice (which is pretty small), the 

collision between puck-and-post is the only significant force (and therefore the net 

force) affecting the puck’s motion. 

 

The centripetal acceleration of an object travelling in a circle at constant speed is 

caused by an unbalanced force. In this case, the net force acts perpendicular to the 

object’s motion, causing it to veer out of its straight path and into a circular path. 

In other words, a centripetal force causes centripetal acceleration, or   Fc = mac. 

 

To calculate centripetal force, start with   FNet = Fc  for any object moving in a circular 

motion.  If   FNet = ma: 

 

� substitute    ac =      to get     Fc = m      

 

� or, substitute   ac =     to get Fc = m  

 

 

Note that these two formulas aren’t on the formula sheet, but don’t panic: simply 

add an ‘m’ to the centripetal acceleration formulas. 
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Some kinds of forces that can act as a centripetal force include: 

� the friction force that holds a child’s feet to the platform of a merry-go-

round while going round-and-round in a circle; 

� the tension force of a rope that allows a tether ball to go around a pole 

without flying out. 

� The gravitational force used by the Sun to keep the Earth in orbit, rather than 

heading out into space (and beyond). 

 

 

Example #3: A 750 kg car travelling at 18.0 m/s comes to a sharp turn in the road, 

where the radius of the curve is 136 m.   

a) Find the centripetal acceleration and force acting on the car as it begins the 

turn. 

b) If the coefficient of static friction between tires and road is µµµµ = 0.254, will the 

car be able to complete the turn at this speed without sliding off the road?   

 

     (see Circular Motion Ex 3 for answer)  
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Analysis of Force Vectors in a Vertical Circle. 
There are numerous examples of vertical circular motion.  Some obvious ones include: 

� roller coasters and toy cars doing loop-the-loops; 

� twirling a mass attached to a cord, much like a 360° pendulum; 

� riding a Ferris wheel; 

� driving a vehicle over a round hill. 

 

For these and all vertical circular motion problems, the net force is not always centripetal, 

and is therefore not dealt with in Physics 12.  For our purposes we will only consider 

those forces which affect the net centripetal force.  This means we can only analyze 

forces acting on a mass at specific positions in the vertical circle. 

 

Objects that travel in vertical, circular paths typically have a minimum of two forces 

acting on them. By examining free-body diagrams of these forces, the net centripetal 

force can be determined mathematically. 

 

A. Bob attached to a string. 

Examine the forces on a bob going in a vertical circle; note that forces pointing into 

the circle center are positive, while forces pointing away from the center are negative. 

As well, any tangential force has no effect on the net centripetal force. 

 

       at top, Fc  = FT + Fg 

 

      FT 

             Fg 

 

  at sides, 

   Fc = FT       FT               FT 

 

           Fg  FT            Fg 

 

      

 

               at bottom, Fc  = FT - Fg 

               Fg 

 

The tension in the string FT that connects the bob to the center must supply the 

force needed to provide the net centripetal force and to support the bob's weight. 
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At the bottom, the tension in this string is   FT = Fc + Fg 

 

At the side, Fg is tangential, so     FT = Fc 

 

At the top, the weight contributes towards Fc:  FT = Fc - Fg 

 

Example #4:  A 0.90 kg mass attached to a cord is whirled in a vertical circle of 

radius 2.5 m.   

a) Find the tension in the cord at the top of the circle if the speed of the mass is 

8.7 m/s. 

b) Find the tension in the cord at the bottom of the circle if the speed is 

maintained at 8.7 m/s.    

 

    (see Circular Motion Ex 4 for answer)  
 

 

Note: at the top of these loops, there is a certain minimum speed, sometimes called 

the critical velocity, that will just keep the mass going around the loop on the track. 

It is the speed at which the track exerts no normal/tension force, so that the needed 

centripetal force equals the weight of the mass, or Fc  = Fg. If the mass goes slower, 

then Fc  < Fg and the mass will fall.   

 

Example #5: The same system above is now whirled at a slower rate. 

a) What minimum speed must it have at the top of the circle so as not to fall 

from the circular path? 

b) At the speed in (a) and neglecting any friction, how fast will the object be 

going at the bottom of the circle? 

c) What is the tension in the cord at the bottom at this speed?  

 

    (see Circular Motion Ex 5 for answer)  
 

 



 3

B. A vertical loop of track (e.g., on a roller coaster). 
A vehicle going around a track loop will have the normal force of the track (FN) 

acting on the mass and contributing to the centripetal force in the same way as FT 

does.  Simply substitute FN in for FT in the above equations. 

 

Example #6:  A 20. gram steel ball-bearing on a rail rolls from rest at point A, as 

shown below.   

 
 

Assuming negligible friction, if h = 0.25 m and R = 0.050 m,  

a) what is the speed of the bearing at point B? 

b) what normal force must the rail exert on the bearing at B?  

 

    (see Circular Motion Ex 6 for answer)  
 

 

C. The ferris wheel. 

In this situation, the forces are arranged slightly differently; note in particular the way in 

which the normal force is arranged at the top: 

 

       FN       at top, Fc  = Fg - FN 

    

       At these two locations, the normal force 

       Fg      acts up to counteract gravity, but each 

       equation is different (remember, pointing 

       in is positive). 

  

        As well, at the top there is a maximum 

       critical speed where the person will just 

       FN     remain in her seat, without flying off 

           tangentially.  The normal force is 0, so 

       once again, at this speed:    Fc  = Fg 

 

       Fg  at bottom, Fc  = FN - Fg 
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Note that this analysis also works for vehicles driving up and over a hill. 

 

Example #7: A 62 kg student drives his 450 kg car at 25 m/s up towards the top of a 

hill of radius 70. m. 

a) What normal force will the driver’s seat exert on him at the top of 

the hill?   

b) How fast can he drive his car over the hill without being airborne? 

    

    (see Circular Motion Ex 7 for answer)  
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Analysis of Force Vectors in Two Dimensions. 
Now we examine circular motion caused by forces that aren’t acting on the same 

plane as the circle. 

 

A: The Conical Pendulum 

 

 
    θθθθ             θθθθ 

       Use this triangle to 

       find radius ‘r’: 

 

                L 
 

     FT 
  

 

 

            r     r 

           Fc 

                      sin θθθθ = r/L 

 

          r = L sin θθθθ 

 

         where r is the radius 

          Fg = mg       of the circular path and 

         L is the pendulum length 

 

Examine the above diagram and make note of the vectors drawn. 

 

In this situation, there are only two forces acting on the pendulum bob: the tension force 

FT and the weight of the bob Fg.  The centripetal force Fc is actually a net force, the 

resultant sum of the two previous forces mentioned, as shown on the next page: 
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The free-body diagram: 

 

 

     FT        θθθθ  ���� add these vectors              θθθθ 

         and draw the             FT          Fg = mg 
         resultant Fc  ���� 

 

                   Fc     

            Fg = mg 
    A right triangle is the result.  Use trigonometry, along with 

 

     Fc = m         and Fc = m  

 

    to find tension FT, speed v, period T, etc. 

 

Example #8:  A 140 g ball is fastened to one end of a 0.24 m string, and the other 

end is whirled in a horizontal conical pendulum. Find:  

a) the speed of the ball in its circular path; 

b) the tension in the string that makes an angle of 30º to the vertical.  

 

    (see Circular Motion Ex 8 for answer)  
 

 

B: Banked Curves 

The purpose of banking a roadway, especially on an oval racetrack where cars are 

travelling at high speeds, is so that the bank itself can provide all the turning force. 

In this way, no friction is needed and accidents are less likely to occur. 

 

In other words, for a particular speed, the car can steer itself around the corner and 

never miss a turn because of ice.  This is the null speed, the speed at which the 

curve is said to have “ideal banking” or “proper” banking.  

 

Note that the equation for null speed can be derived.  At this speed, there are only 

two forces (the weight and the normal force) which add together to supply the 

centripetal force (Fc): 
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Free-body diagram of car 

on a curved bank, coming  

towards you (out-of-page) 

and turning to the right: 

 

               FN 

 

 

                      θθθθ    

        ����vector-add to        FN   Fg 

            find the 

            resultant:     Fc 

              Fg = mg      θθθθ 

  

 

To the right, the sum of the two forces produces a right triangle with resultant Fc, 

just as in the conical pendulum.  From this diagram, we see that: 

 

tan θθθθ =   where    Fc = m  and ‘r’ is the radius of the track’s curve. 

 

� substitute and cancel to obtain  tan θθθθ  =   

 
Note that this derivation is based on the null speed only (i.e. no friction).   

 

Example #9:  A curve of 30 m radius is banked so that a car may make a turn 

at a speed of 13 m/s without depending on friction at all. What is the slope of 

the curve? 

 

    (see Circular Motion Ex 9 for answer)  
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What would occur if you were driving a car around an “ideally” banked corner at a 

speed: 

a) below the null speed?   

� if the car is travelling too slowly, the normal force of the track will not be 

great enough to hold the car in a circular path, so the car will start to slide 

down the bank; 

� therefore, friction must act up-bank to keep the vehicle in circular motion. 

b) greater than the null speed?   

� if the car is travelling too quickly, its momentum would cause the car to 

start sliding up the bank;  

� therefore, a friction force must act down-bank to prevent this motion and 

keep the vehicle moving in a circular path. 

 

In either case, there are too many vectors to create a triangle, and is therefore beyond the 

scope of this course. However, if you’re finding this material much too simple and need a 

challenge, read on! 

 

Examine force components both parallel and perpendicular to the surface of the bank. 

 

         Fc sin θθθθ 

 

 Fc     ����Fc cos θθθθ is the centripetal force parallel to 

         θθθθ        the road bank 

        Fc cos θθθθ    ����Fc sin θθθθ is the centripetal force ⊥ to 

                   θθθθ         the road bank 

 

 

Examining the perpendicular forces,  

� Fc sin θθθθ  is the unbalanced force which supplies the perpendicular 

component of ac.   

� The normal force (FN) acts positively to supply this net force, while the 

perpendicular component of the car's weight (Fg cos θθθθ) acts against it, so 

that: 

      Fc sin θθθθ  =  FN - Fg cos θθθθ  (1) 
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Examining the parallel forces,  

� we see that inertia would carry the mass up-slope as it rounds the bank; an 

unbalanced force, Fc cos θθθθ exists which keeps this from happening.   

� The parallel component of the car's weight (Fg sin θθθθ) will act positively down-slope 

to supply this net force.  As well, 

• if the car is travelling too slowly, friction will act up-slope, negatively, so 

that: 

      Fc cos θθθθ  = Fg sin θθθθ - Ff  (2) 

 

• if the car is travelling too quickly, friction will act down-slope, positively, so 

that: 

      Fc cos θθθθ  = Fg sin θθθθ + Ff  (3) 

 

Use either equation (1) and (2) or (3) by substituting in    Fc = m    and     

Fc = m , as well as    Ff = µµµµFN    to solve for unknown values. 

 

Remember, this is a university-style problem, so if you’re having difficulty with it, give it 

a pass, since it is unlikely to show up on the final exam. 

 

Example #10:  The radius of a velodrome curve is 40 m and the banked angle is 15º.  

If µ=0.20, what is the maximum speed at which a cyclist can take this curve without 

slipping?      

 

    (see Circular Motion Ex 10 for answer)  
 

 

 

 

 



Example #1: A child stands on a merry-go-round that is spun around with a 

period of 2.3 s. 

a) If the child is 0.65 m from the center of the merry-go-round, what is her 

acceleration? 

b) If she then moves to a distance of 1.4 m from the center, at what speed 

will she be travelling?   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #2: In the Olympics, the Hammer Throw competition involves athletes 

spinning a heavy weight on a cord around several times before releasing the weight 

at an angle to the ground in order for it to travel a maximum distance.  If one such 

weight of mass 15 kg was spun 4.5 times in 3.2 s in a circle of radius 1.7 m, then 

released at an angle of 37°°°° to the ground, 

a) what was the average speed and acceleration of the weight as it was spun? 
b) how far was it flung, assuming it landed at about the same height it was 

released?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #3: A 750 kg car travelling at 18.0 m/s comes to a sharp turn in the road, 

where the radius of the curve is 136 m.   

a) Find the centripetal acceleration and force acting on the car as it begins the 

turn. 

b) If the coefficient of static friction between tires and road is µµµµ = 0.254, will the 

car be able to complete the turn at this speed without sliding off the road?   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #4:  A 0.90 kg mass attached to a cord is whirled in a vertical circle of 

radius 2.5 m.   

a) Find the tension in the cord at the top of the circle if the speed of the mass is 

8.7 m/s. 

b) Find the tension in the cord at the bottom of the circle if the speed is 

maintained at 8.7 m/s.    
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Example #5: The same system above is now whirled at a slower rate. 

a) What minimum speed must it have at the top of the circle so as not to fall 

from the circular path? 

b) At the speed in (a) and neglecting any friction, how fast will the object be 

going at the bottom of the circle? 

c) What is the tension in the cord at the bottom at this speed?  

 

 

  

 



Example #6:  A 20. gram steel ball-bearing on a rail rolls from rest at point A, as 

shown below.   

 
 

Assuming negligible friction, if h = 0.25 m and R = 0.050 m,  

a) what is the speed of the bearing at point B? 

b) what normal force must the rail exert on the bearing at B?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #7: A 62 kg student drives his 450 kg car at 25 m/s up towards the top of a 

hill of radius 70. m. 

a) What normal force will the driver’s seat exert on him at the top of 

the hill?   

b) How fast can he drive his car over the hill without being airborne? 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #8:  A 140 g ball is fastened to one end of a 0.24 m string, and the other 

end is whirled in a horizontal conical pendulum. Find:  

a) the speed of the ball in its circular path; 

b) the tension in the string that makes an angle of 30º to the vertical.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #9:  A curve of 30 m radius is banked so that a car may make a turn 

at a speed of 13 m/s without depending on friction at all. What is the slope of 

the curve? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #10:  The radius of a velodrome curve is 40 m and the banked angle is 15º.  

If µ=0.20, what is the maximum speed at which a cyclist can take this curve without 

slipping?      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


