Connected Mass Problems

Consider this problem: a truck pulls a log with a force of 2.2×10^3 N. <u>Sliding</u> friction exists between log and road, and friction between truck's tires and road can be ignored. The mass of the truck is 1.0×10^3 kg, while the mass of the log is 2.0×10^2 kg. Find the acceleration of the system, and the tension in the rope connecting the two masses.

Start with a sketch of the system: (choose \longrightarrow as positive)

> To find acceleration, consider a f.b. diagram of the system:

$$\mathbf{H}_{\mathrm{f}} = \mu \mathbf{F}_{\mathrm{N}} \qquad \qquad \mathbf{h}_{\mathrm{T}} = 1.20 \text{ x } 10^{3} \text{ kg} \qquad \qquad \mathbf{h}_{\mathrm{T}} = 2.20 \text{ x } 10^{3} \text{ N}$$

 \rightarrow first, find $\mathbf{F}_{f} = \mu \mathbf{F}_{N}$ where \mathbf{F}_{N} = the weight of the log

$$F_f = 0.18(2.0 \text{ x } 10^2)(9.8) = 353 \text{ N}$$

$$\rightarrow$$
so $F_{Net} = 2200 - 353 = 1847 N$

 \rightarrow finally, $F_{\text{Net}} = m_{\text{T}}a \rightarrow 1847 = 1200a \rightarrow a = 1.54 \text{ m/s}^2$ (right)

 \rightarrow this acceleration is the same for <u>any part of the system</u>.

> To find tension, consider a f.b. diagram of <u>only</u> the log OR only the truck:

→ for the log:

$$F_f = 353$$
 N $= 2.0 \times 10^2$ kg
 $Tension F_T = ?$
 $a = 1.54$ m/s²

 \rightarrow First, find $F_{Net} = ma = 200(1.54) = 308 N$

 \rightarrow Now use the f.b.d. to make an equation:

$$F_{Net} = F_T - 400 \rightarrow 308 = F_T - 353 \rightarrow F_T = 6.5 \times 10^2 N$$

The same answer would result if only the truck was analyzed. The f.b.d. for the truck would appear as:

(these are the only horizontal forces acting on the truck; with no friction force here, the vertical forces have no effect on the net force)

→First, find $F_{Net} = ma = 1000(1.54) = 1540$ N

 \rightarrow Now use the f.b.d. to make an equation:

$$F_{Net} = 2200 - F_T \rightarrow 1540 = 2200 - F_T \rightarrow F_T = 6.6 \times 10^2 N$$

The difference between the two values for F_T results from rounding off answers as the problem is worked out. To avoid this, carry extra sig. figs. as you proceed through your calculations.

Example #11. A Truck pulls a log with a force of 2500 N. The log drags back with a 800 N force of friction. The mass of the truck is 2500 kg, the mass of the log is 600 kg. Find:

- a) the acceleration of the truck & log system.
- b) the tension in the rope.

(see Dynamics Ex 11 for answer)

Example #12. Two masses shown below are connected together and pulled by an applied force to the right, causing an acceleration of 2.0 m/s^2 . There is a coefficient of friction between the 2.0 kg mass and the floor, while the friction between the cart and the floor is negligible. Find:

- a) the tension in the string attaching the two masses.
- b) the applied force used to pull the system.

(see Dynamics Ex 12 for answer)