Connected Mass Problems

Consider this problem: a truck pulls a \log with a force of $2.2 \times 10^{3} \mathrm{~N}$. Sliding friction exists between \log and road, and friction between truck's tires and road can be ignored. The mass of the truck is $1.0 \times 10^{3} \mathrm{~kg}$, while the mass of the \log is $2.0 \times 10^{2} \mathrm{~kg}$. Find the acceleration of the system, and the tension in the rope connecting the two masses.

Start with a sketch of the system: (choose \longrightarrow as positive)

$>$ To find acceleration, consider a f.b. diagram of the system:

\rightarrow first, find $\mathbf{F}_{\mathbf{f}}=\boldsymbol{\mu} \mathbf{F}_{\mathbf{N}} \quad$ where $\mathbf{F}_{\mathbf{N}}=$ the weight of the \log

$$
\begin{aligned}
& \quad \mathbf{F}_{\mathrm{f}}=\mathbf{0 . 1 8}\left(\mathbf{2 . 0} \times 10^{2}\right)(9.8)=\mathbf{3 5 3} \mathrm{N} \\
& \rightarrow \text { so } \mathrm{F}_{\mathrm{Net}}=\mathbf{2 2 0 0}-\mathbf{3 5 3}=\mathbf{1 8 4 7} \mathrm{N} \\
& \rightarrow \text { finally, } \quad \mathbf{F}_{\mathrm{Net}}=\mathbf{m}_{\mathrm{T}} \mathrm{a} \quad \rightarrow \mathbf{1 8 4 7}=\mathbf{1 2 0 0 a} \quad \rightarrow \mathrm{a}=1.54 \mathrm{~m} / \mathrm{s}^{2} \text { (right) }
\end{aligned}
$$

\rightarrow this acceleration is the same for any part of the system.
$>$ To find tension, consider a f.b. diagram of only the \log OR only the truck:

$$
\begin{aligned}
& \rightarrow \text { for the log: } \quad \mathbf{m}=\mathbf{2 . 0} \mathbf{x 1 0} \mathbf{~ k g} \\
& \mathbf{F}_{\mathrm{f}}=\mathbf{3 5 3} \mathrm{N} \longleftrightarrow \text { Tension } \mathbf{F}_{\mathrm{T}}=\text { ? } \\
& \xrightarrow{\mathrm{a}=1.54 \mathrm{~m} / \mathbf{s}^{2}}
\end{aligned}
$$

\rightarrow First, find $\mathbf{F}_{\text {Net }}=\mathbf{m a}=\mathbf{2 0 0}(\mathbf{1 . 5 4})=\mathbf{3 0 8} \mathbf{N}$
\rightarrow Now use the f.b.d. to make an equation:

$$
F_{\text {Net }}=F_{T}-400 \rightarrow 308=F_{T}-353 \rightarrow F_{T}=6.5 \times 10^{2} \mathrm{~N}
$$

The same answer would result if only the truck was analyzed. The f.b.d. for the truck would appear as:

(these are the only horizontal forces acting on the truck; with no friction force here, the vertical forces have no effect on the net force)
\rightarrow First, find $\mathbf{F}_{\text {Net }}=\mathbf{m a}=\mathbf{1 0 0 0}(\mathbf{1 . 5 4})=\mathbf{1 5 4 0} \mathrm{N}$
\rightarrow Now use the f.b.d. to make an equation:

$$
F_{\text {Net }}=2200-F_{T} \quad \rightarrow \quad 1540=2200-F_{T} \quad \rightarrow \quad F_{T}=6.6 \times 10^{2} \mathrm{~N}
$$

The difference between the two values for $\mathbf{F}_{\mathbf{T}}$ results from rounding off answers as the problem is worked out. To avoid this, carry extra sig. figs. as you proceed through your calculations.

Example \#11. A Truck pulls a \log with a force of 2500 N . The log drags back with a 800 N force of friction. The mass of the truck is 2500 kg , the mass of the \log is 600 kg . Find:
a) the acceleration of the truck \& log system.
b) the tension in the rope.
(see Dynamics Ex 11 for answer)

Example \#12. Two masses shown below are connected together and pulled by an applied force to the right, causing an acceleration of $2.0 \mathrm{~m} / \mathbf{s}^{2}$. There is a coefficient of friction between the 2.0 kg mass and the floor, while the friction between the cart and the floor is negligible. Find:

a) the tension in the string attaching the two masses.
b) the applied force used to pull the system.

