Example 1. Find the electrostatic force between a $+3.0 \mu \mathrm{C}$ charge and $\mathrm{a}+8.0$ $\mu \mathrm{C}$ charge, 0.25 m apart.

$$
\begin{aligned}
& F_{E}=\frac{k Q_{q}}{r^{2}} \\
&=\frac{\left(9 \times 10^{9}\right)\left(3 \times 10^{-6}\right)\left(8 \times 10^{-6}\right)}{(.25)^{2}} \\
& F_{E}=3.5 \mathrm{~N}, \text { repulsive (like } \\
&\text { charges })
\end{aligned}
$$

Example 2. A - $6.0 \mu \mathrm{C}$ charge and a $-4.0 \mu \mathrm{C}$ charge repel each other with a force of 7.0 N . How far apart are these point charges?

$$
\begin{aligned}
& F_{E}=\frac{k Q q}{r^{2}} \\
& 7.0=\frac{\left(9 \times 10^{9}\right)\left(6 \times 10^{-6}\right)\left(4 \times 10^{-6}\right)}{r^{2}} \\
& r=0.18 \mathrm{~m}
\end{aligned}
$$

Example 3. What is the force on the $3.0 \mu \mathrm{C}$ charge if the charges are positioned along one line as follows.

start with f.b.d. on "B":

$$
=1.28 \mathrm{~N} \longrightarrow
$$

$$
F_{B C}=\frac{\left(9 \times 10^{9}\right)\left(3.0 \times 10^{-6}\right)\left(8.0 \times 10^{-6}\right)}{.25^{2}}
$$

$$
=3.46 \mathrm{~N} \longleftarrow
$$

From analysis of f.b.d.:

$$
F_{\text {Net }}=F_{B C}-F_{A B}=3.46-1.28
$$

$F_{\text {net }}=2.2 \mathrm{~N}$ to the left

Example 4. Three charges are laid out as in the following diagram. Find the resultant force due to the other two charges on charge B.

Start with F.b.d. on "B":

$$
F_{A B}=\frac{\left(9 \times 10^{9}\right)\left(50 \times 10^{-6}\right)\left(80 \times 10^{-6}\right)}{.3^{2}}
$$

$$
=400 \mathrm{~N} \downarrow
$$

$$
\begin{aligned}
F_{B C} & =\frac{\left(9 \times 10^{9}\right)\left(80 \times 10^{-6}\right)\left(50 \times 10^{-6}\right)}{.4^{2}} \\
& =225 \mathrm{~N} \rightarrow
\end{aligned}
$$

Now draw a forces triangle to find $F_{\text {net: }}$

$$
\left.\begin{array}{rlrl}
400 N & & =459 \mathrm{~N} \\
225 \mathrm{~N}
\end{array} \quad \begin{array}{rl}
F_{\text {Net }} & =\sqrt{400^{2}+225^{2}} \\
& \theta
\end{array}\right) \tan ^{-1}\left[\frac{225}{400}\right]
$$

$\therefore F_{\text {net }}=4.6 \times 10^{2} \mathrm{~N} @ 29^{\circ}$ from line $A-B$

Example 5. Examine the electroscope arrangement below, where two pith balls have identical charges and are repelling each other.

If each string has a length $I=0.20 \mathrm{~m}$, the distance of separation between the charged pith balls is $\mathbf{r}=\mathbf{0 . 0 5} \mathbf{~ m}$, and the mass of the balls is 0.010 kg each, find the magnitude of the charge on each pith ball.
Start: find $\frac{\Theta}{2}$ (called " ϕ ")

$$
\begin{aligned}
\sin \phi & =\frac{.025}{.2} \\
\phi & =7.18^{\circ}
\end{aligned}
$$

Next: draw a f.b.d. of one pith ball:

\rightarrow Since pith ball is stationary, draw a forces triangle to show how the 3 forces cancel out:

$$
\begin{aligned}
& \Rightarrow \frac{F_{E}}{F_{g}}=\tan \theta \\
& \Rightarrow F_{E}=(.010)(9.8) \tan 7.18 \\
& \quad=.0123 \mathrm{~N}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& F_{E}=\frac{k Q g}{r^{2}}=\frac{k Q^{2}}{r^{2}} \rightarrow \text { charges are equal } \\
& .0123=\frac{\left(9 \times 10^{9}\right) Q^{2}}{.05^{2}} \\
& Q=5.9 \times 10^{-8} \mathrm{C}
\end{aligned}
$$

Note: the repulsive nature tells us each force has the same charge, but the type of charge $(+$ or -) is unknown.

Example 6. Two unknown charges have a force between them of 5.6 N. How will that force change if:
a) one of the charges is tripled?
b) one charge is halved and the other quadrupled?
c) the distance between them halved?
d) both charges are doubled and the distance tripled?
a) $F \propto Q$

$$
\therefore \text { new } F=5.6 \times 3=16.8 \mathrm{~N}
$$

b) $F \propto Q$ and $F \alpha q$

$$
\therefore \text { new } F=5.6 \times \frac{1}{2} \times 4=11.2 \mathrm{~N}
$$

c) $F<\frac{1}{r^{2}}$

$$
\therefore \text { new } F=5.6 \times \frac{1}{.5^{2}}=22.4 \mathrm{~N}
$$

d)

$$
\begin{aligned}
\text { new } F=5.6 \times & 2 \times 2 \times \frac{1}{3^{2}} \\
= & 2.49 \mathrm{~N}
\end{aligned}
$$

Example 7. A $6.0 \mu \mathrm{C}$ charge and a $4.5 \mu \mathrm{C}$ charge are positioned 1.6 cm apart. If the smaller charge is removed, what is the electric field strength at the location of the $4.5 \mu \mathrm{C}$ charge, due to the larger charge?

$$
\begin{aligned}
E & =\frac{k Q \leftarrow \text { use } 6.0 \mu C \text { charge }}{r^{2}} \\
& =\frac{\left(9 \times 10^{9}\right)\left(6 \times 10^{-6}\right)}{.016^{2}} \\
E & =2.1 \times 10^{8} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Example 8. Find the resultant field at point B due to the two charges.

First: draw a vectors diagram of the field lines at B:

Next: calculate E due to each charge:

$$
\begin{aligned}
V_{A} & =\frac{\left(9 \times 10^{9}\right)\left(30 \times 10^{-6}\right)}{.20^{2}} \\
& =6.75 \times 10^{6} \mathrm{~N} / \mathrm{C} \\
E_{C} & =\frac{\left(9 \times 10^{9}\right)\left(70 \times 10^{-6}\right)}{.60^{2}} \\
= & 1.75 \times 10^{6} \mathrm{~N} / \mathrm{C} \leftarrow
\end{aligned}
$$

continued on next page...

Now draw the vector-sum of the two field lines:

$$
\begin{aligned}
& \text { Resultant } / \theta \underbrace{}_{6.75 \times 10^{6}} \\
& 1.75 \times 10^{6} \\
& E_{R}=\sqrt{\left(1.75 \times 10^{6}\right)^{2}+\left(6.75 \times 10^{6}\right)^{2}} \\
& =6.97 \times 10^{6} \mathrm{~N} / \mathrm{C} \\
& \theta=\tan ^{-1}\left[\frac{1.75}{6.75}\right]=14.5^{\circ} \\
& \therefore E=7.0 \times 10^{6} \mathrm{~N} / \mathrm{C} \text { G } 15^{\circ} \text { from line } A-B
\end{aligned}
$$

Example 9. Find the work done to move a charge (q) from position \#1 to \#2 under the influence of the field of charge Q. (0.90 J)

$$
\begin{aligned}
W & =\Delta E_{p}=\frac{k Q q}{r_{2}}-\frac{k Q q}{r_{1}}=k Q_{q}\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right] \\
& =\left(9 \times 10^{9}\right)\left(20 \times 10^{-6}\right)\left(3 \times 10^{-6}\right)\left[\frac{1}{0.5}-\frac{1}{3}\right]
\end{aligned}
$$

$$
\omega=0.90 \mathrm{~J}
$$

Example 10. Re-examine the diagram from Example 4 (see below). Find the potential energy of particle B due to the other charges.

E_{p} is a scalar quantity, so no vector analysis is needed.
\rightarrow Find the potential energy "B" contains due to each particle:

$$
\begin{aligned}
& \text { due to each particle: } \\
& E_{P(A B)}=\frac{\left(9 \times 10^{9}\right)\left(50 \times 10^{-6}\right)\left(80 \times 10^{-6}\right)}{.30} \\
&=120 \mathrm{D} \\
& E_{P(B C)}=\frac{\left(9 \times 10^{9}\right)\left(80 \times 10^{-6}\right)\left(-50 \times 10^{-6}\right)}{.40} \\
&=-90] \\
&\left.\therefore E_{P(\text { total })}=120-90=30\right]
\end{aligned}
$$

Example 11. What is the potential difference between the two positions in the following example?

$$
\begin{aligned}
& Q=20 \mu \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3.0 m } \\
& \Delta v=v_{b}-v_{a} \\
& =\frac{k Q}{r_{b}}-\frac{k Q}{r_{a}}=k Q\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right] \\
& =\left(9 \times 10^{9}\right)\left(20 \times 10^{-6}\right)\left[\frac{1}{3}-\frac{1}{.5}\right] \\
& \Delta V=3.0 \times 10^{5} \mathrm{~V}
\end{aligned}
$$

Example 12. Reexamine the diagram from Example 8 (see below). Find the electric potential at point B due to the other charges. Hint: remember, electric potential is a scalar quantity. No vector analysis is needed here.

Example 13. A charged particle of $8.0 \times 10^{-19} \mathrm{C}$ is held stationary inside an electric field produced by two electric plates. The voltage between the plates is 270 V and they are separated by a distance of $6.0 \times 10^{-3} \mathrm{~m}$.

a) What constant electric field strength exists between the plates?
b) What is the mass of the particle? Hint: first draw a f.b.d. of the particle to determine its weight.
a) $E=\frac{\Delta V}{d}=\frac{270}{6.0 \times 10^{-3}}$

$$
E=45000 \mathrm{~N} / \mathrm{C}
$$

\Rightarrow particle is stationary,
So

$$
F_{g}=F_{E}
$$

continued on next page...
\rightarrow since $F_{E}=q E$
then

$$
\begin{aligned}
F_{g} & =F_{E}=\left(8 \times 10^{-19}\right)(45000) \\
& =3.6 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

Since $\mathrm{Fg}=\mathrm{mg}$,

$$
\begin{aligned}
& m=\frac{3.6 \times 10^{-14}}{9.8} \\
& m=3.7 \times 10^{-15} \mathrm{~kg}
\end{aligned}
$$

Example 14. A proton travelling at $3.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$ passes through an electric field as shown below. How fast will the proton be going after it emerges from the field?

This is a conservation of energy problem: $\quad \Delta E_{p}=\Delta E_{k}$

$$
\begin{gathered}
q \Delta V=\frac{1}{2} m v_{F}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) \\
\left(1.6 \times 10^{-19}\right)(7500)=\frac{1}{2}\left(1.67 \times 10^{-27}\right)\left[v_{f}^{2}-\left(3.4 \times 10^{6}\right)^{2}\right] \\
v_{F}=3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Example 15. An electron travelling at $4.6 \times 10^{7} \mathrm{~m} / \mathrm{s}$ enters a constant electric field between two charged plates spread 0.0085 m apart, as shown below. The voltage between the plates is 650 V and the plates are 0.036 m long.

a) What is the electric force acting on the electron?
b) How much time is taken for the electron to pass through the plates?
c) How far will the electron "fall" from its path while in-between the two plates?
Hint: for b) and c), you'll have to examine horizontal and vertical components, just like for objects fired horizontally off a cliff.
a) $F_{E}=q E$ and $E=\frac{\Delta V}{d} \begin{gathered}\text { between the } \\ \text { plates }\end{gathered}$
so

$$
\begin{aligned}
& F_{E}=q \frac{\Delta V}{d} \\
& =\frac{\left(1.6 \times 10^{-19}\right)(650)}{.0085} \\
& =1.22 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

b) speed is constant "horizontally" because F_{E} acts \perp to motion

$$
\begin{aligned}
\therefore d & =v_{a v} t \quad t=\frac{.036}{4.6 \times 10^{7}} \\
& t=7.83 \times 10^{-10} \mathrm{~s}
\end{aligned}
$$

c) \rightarrow find "vertical" acceleration:

$$
\begin{aligned}
& F_{\text {Net }}=F_{E}=m a \\
& a=\frac{1.22 \times 10^{-14}}{9.11 \times 10^{-31}}=1.34 \times 10^{16} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\rightarrow also in the vertical direction:

$$
\begin{aligned}
& V_{0}=0 \\
& t=7.83 \times 10^{-10} \mathrm{~s} \rightarrow \text { time in plates }
\end{aligned}
$$ where election "falls"

$$
\begin{aligned}
d & =y_{0} t+\frac{1}{2} a t^{2} \\
& =\frac{1}{2}\left(1.34 \times 10^{16}\right)\left(7.83 \times 10^{-10}\right)^{2} \\
d & =4.1 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

Example 16. Given this information:
$\mathrm{V}_{\mathrm{a}}=100 \mathrm{~V} \quad$ distance between Y-plates $=0.040 \mathrm{~m}$
$V_{d}=10.0 \mathrm{~V} \quad$ length of Y-plates $=0.100 \mathrm{~m}$
a) use accelerating voltage V_{a} to find electron velocity in the x direction v_{x} after leaving the anode.
b) since v_{x} is constant after leaving the anode, calculate the time taken for an electron to pass through the deflecting Y-plates.
c) use deflecting voltage V_{d} to find the force F_{y} on the electron between the Y-plates.
d) find the acceleration a_{y} of the electron between the Y-plates.
e) At this point, you have enough kinematics information to find the y-deflection d_{y} between the Y-plates.
f) If the accelerating voltage is now doubled, while the deflecting voltage is reduced to $3 / 4$ of its original value, what is the new magnitude for d_{y} ?
a) use conservation of energy: $\Delta E_{P}=\Delta E_{K}$

$$
\begin{gathered}
q \Delta v_{a}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} \operatorname{mov}_{i}\left(v_{i}=0\right) \\
\left(1.6 \times 10^{-19}\right)(100)=\frac{1}{2}\left(9.11 \times 10^{-31}\right) v_{f}^{2} \\
v=5.9 \times 10^{6} \mathrm{~m} / \mathrm{s} \quad\left(5.93 \times 10^{6}\right)
\end{gathered}
$$

b) speed from a) is constant in horizontal direction through deflecting plates, so

$$
\begin{aligned}
d= & v_{\text {aw }} t \quad \text { where } d=\text { length of plates } \\
& .100=\left(5.93 \times 10^{6}\right) t \\
t & =1.7 \times 10^{-8} \mathrm{~s} \quad\left(1.69 \times 10^{-8} \mathrm{~s}\right)
\end{aligned}
$$

\rightarrow deflecting force
c) $F_{E}=q E$ and $E=\frac{\Delta U_{d}}{d}$
so $F_{E}=q \frac{\Delta V_{d}}{d}$ distance between defledif $\begin{gathered}\text { plates } \\ \text { p }\end{gathered}$

$$
\begin{aligned}
& =\frac{\left(1.6 \times 10^{-19}\right)(10)}{.040} \\
F_{E} & =4.0 \times 10^{-17} \mathrm{~N}
\end{aligned}
$$

d)

$$
\begin{aligned}
& F_{\text {Net }}=F_{E}=m a \\
& 4.0 \times 10^{-17}=9.11 \times 10^{-31} a \\
& a=4.4 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2} \quad\left(4.39 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}\right)
\end{aligned}
$$

e) "vertically":

$$
\begin{aligned}
& v_{0}=0 \\
& t=1.69 \times 10^{-8} \mathrm{~s} \quad \text { (to "fall" } \\
& \text { through plates) } \\
& a=4.39 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
d & =y_{0} t+\frac{1}{2} a t^{2} \\
& =\frac{1}{2}\left(4.39 \times 10^{13}\right)\left(1.69 \times 10^{-8}\right)^{2} \\
d & =6.3 \times 10^{-3} \mathrm{~m} \quad\left(6.27 \times 10^{-3}\right)
\end{aligned}
$$

f) $d \alpha \Delta V_{d}$ and $V \alpha \frac{1}{\Delta V_{a}}$

So

$$
\begin{aligned}
& d=\left(6.27 \times 10^{-3}\right) \times .75 \times \frac{1}{2} \\
& d=2.35 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

