a) Negative Exponents
$3^{-5}=$
$(-12)^{-4}=$
$\frac{1}{7^{-2}}=$

$$
\left(\frac{2}{3}\right)^{-5}=
$$

b) Rational Exponents
$6^{\frac{1}{2}}=$
$(-5)^{\frac{1}{3}}=$

$3^{\frac{4}{5}}=$
$\sqrt{7^{5}}=$

Numbers, Radicals, and Exponents LESSON SIX - Exponents II Lesson Notes

$$
a^{-m}=\frac{1}{a^{m}}
$$

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
$$

Example 1

Simplify each of the following expressions. Any variables in your final answer should be written with positive exponents.
a) $(-4)^{-2}$
b) $\left(\frac{3}{2}\right)^{-3}$
c) $\left(\frac{a^{2} b}{c^{3}}\right)^{-1}$
d) $\left(3 a^{3}\right)^{-2}$
e) $\left(\frac{3^{-1}}{5}\right)^{-2}$
f) $\frac{5(-4)^{0}}{2^{-1}}$

$$
\begin{gathered}
a^{-m}=\frac{1}{a^{m}} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
\end{gathered}
$$

Example 2
Simplify. Any variables in your final answer should be written with positive exponents.
a) $2^{3}(5)^{-2}$
b) $\frac{2^{-3}}{a^{4}}$
c) $\frac{(2 a)^{3}}{(2 a)^{-2}}$
d) $\left(a^{5}\right)^{-\frac{3}{5}}$
e) $\left(\frac{a^{-4}}{(a b)^{2}}\right)^{\frac{3}{2}}$
f) $\left(5 a^{2}\right)^{-\frac{3}{2}}\left(a^{\frac{1}{2}}\right)$

Numbers, Radicals, and Exponents LESSON SIX - Exponents II Lesson Notes

$$
\begin{gathered}
a^{-m}=\frac{1}{a^{m}} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
\end{gathered}
$$

Example 3
a) $\frac{10 a^{7} b^{9} c^{6}}{5 a^{6} b^{10} c^{8}}$
b) $\frac{-3 a^{-7} b^{-11}}{12 a^{4} b^{-3}}$
c) $\left(\frac{2}{5} a^{-3} b^{-1}\right)^{-3}$
d) $\left(\frac{4 a^{2} b^{3}}{8 a b^{5}}\right)^{-2}$

$$
\begin{gathered}
a^{-m}=\frac{1}{a^{m}} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
\end{gathered}
$$

Example 4
a) $\left(a^{5}\right)\left(a^{-\frac{1}{2}}\right)$
b) $\left(27 a^{\frac{1}{2}}\right)^{\frac{2}{3}}$

Simplify. Any variables in your final answer should be written with positive exponents. Fractional exponents should be converted to a radical.
c) $\left(\frac{9 a^{-2}}{16 b^{-4}}\right)^{-\frac{3}{2}}$
d) $\left(2^{-\frac{5}{4}}\right)\left(2^{-\frac{4}{3}}\right)$

Numbers, Radicals, and Exponents
LESSON SIX - Exponents II Lesson Notes

Example 5

a) $\frac{-20 a^{-\frac{2}{3}} b}{4 a b^{-\frac{1}{2}}}$
c) $\frac{\left(\frac{1}{16}\right)^{\frac{5}{4}}\left(\frac{1}{16}\right)^{-\frac{3}{4}}}{\left(\frac{1}{16}\right)^{-5}\left(\frac{1}{16}\right)^{4}}$
d) $9^{\frac{1}{2}}\left(\frac{a^{\frac{3}{4}}}{2 b^{-\frac{1}{7}}}\right)^{0}$

$$
\begin{gathered}
a^{-m}=\frac{1}{a^{m}} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
\end{gathered}
$$

Example 6

Write each of the following radical expressions with rational exponents and simplify.
a) $-\sqrt{a^{3}}$
b) $\sqrt{\sqrt{a}}$
c) $\sqrt{\sqrt[3]{a}}$
d) $\sqrt{\sqrt[3]{64 a^{6} b^{12}}}$

Numbers, Radicals, and Exponents LESSON SIX - Exponents II Lesson Notes

Example 7

A culture of bacteria contains 5000 bacterium cells. This particular type of bacteria doubles every 8 hours. If the amount of bacteria is represented by the letter A, and the elapsed time (in hours) is represented by the letter t,
 the formula used to find the amount of bacteria as time passes is:

$$
A=5000(2)^{\frac{t}{8}}
$$

a) How many bacteria will be in the culture in 8 hours?
b) How many bacteria will be in the culture in 16 hours?
c) How many bacteria were in the sample 8 hours ago?

$$
\begin{gathered}
a^{-m}=\frac{1}{a^{m}} \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \text { OR }(\sqrt[n]{a})^{m}
\end{gathered}
$$

Example 8

Over time, a sample of a radioactive isotope will lose its mass. The length of time for the sample to lose half of its mass is called the half-life of the isotope. Carbon-14 is a radioactive isotope commonly used to date archaeological finds. It has a half-life of 5730 years.

If the initial mass of a Carbon-14 sample is 88 g , the formula used to find the mass remaining as time passes is given by:

$$
A=88\left(\frac{1}{2}\right)^{\frac{t}{5730}}
$$

In this formula, A is the mass, and t is time (in years) since the mass of the sample was measured.
a) What will be the mass of the Carbon- 14 sample in 2000 years?
b) What will be the mass of the Carbon- 14 sample in 5730 years?
c) If the mass of the sample is measured 10000 years in the future, what percentage of the original mass remains?

