3.6 The Inverse and the Contrapositive

of Conditional Statements p. 208

Name	
Date	

Goal: Understand and interpret the contrapositive and inverse of a conditional statement.

- 1. **inverse**: A statement that is formed by negating both the hypothesis and the conclusion of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2," the inverse is "If a number is **not** even, then it is **not** divisible by 2."
- 2. **contrapositive**: A statement that is formed by negating both the hypothesis and the conclusion of the **converse** of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2," the contrapositive is "If a number is **not** divisible by 2, then it is **not** even."

р	q	$p \Rightarrow q$
Т	Т	Т
F	F	Т
F	Т	Т
Т	F	F

In logic notation, the inverse of "if p, then q" is written as "If $\neg p$, then $\neg q$."

Communication | Notation

In logic notation, the contrapositive of "if p, then q" is written as "If $\neg q$, then $\neg p$."

Example 1: Verifying the inverse and contrapositive of a conditional Statement (p. 209) Consider the following conditional statement: "If today is February 29, then this year is a leap year."

a)	Verify the statement, or disprove it with a counterexample.						
	Hypothesis (p):	Conditional statement: if p , then q .					
	Conclusion (a) :						
		p	q	$p \Longrightarrow q$			
b)	Verify the converse, or disprove it with a counter	a counterexample.					
	converse:						
	Hypothesis (p):	is (<i>p</i>): Converse: if <i>q</i> , then <i>p</i> .					
	Conclusion (q):						
		q	p	$q \Longrightarrow p$			
c)	Verify the inverse, or disprove it with a countere	xample.					
	Inverse:						
	Hypothesis $(\neg p)$:	Inverse: if	, t	hen			
	Conclusion (¬q):						
		$\neg p$	$\neg q$	$\neg p \Longrightarrow \neg q$			
d)	Verify the contrapositive, or disprove it with a co						
u)	Contrapositive:	any the contrapositive, or disprove it with a counterexample.					
	Hypothesis $(\neg q)$:	bothesis $(\neg q)$: Contrapositive: if, then					
	Conclusion (¬ <i>p</i>):						
		$\neg q$	p	$\neg q \Rightarrow \neg p$			

Example 2: Examining the relationship between a conditional statement and its contrapositive (p. 210)

Consider the following conditional statement: "If a number is a multiple of 10, then it is a multiple of 5."

a) Write the contrapositive of this statement.

b) Verify that the conditional and contrapositive statements are both true.

In Summary:	
You form the inverse of a conditional statement by	
the hypothesis and the conclusion.	
You form the converse of a conditional statement by	
the hypothesis and the conclusion	
You form the contrapositive of a conditional statement by	
the hypothesis and the conclusion of it's	
If a conditional statement is true, then it's	is true, and vice
versa	
If the inverse of a conditional statement is true, then the	of
the statement is also true, and vice versa.	

HW: 3.6 p. 214-216 #1, 5, 6, 7, 9 & 12