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Newton's Law of Universal Gravitation 
The formula  Fg = mg  is used to describe the weight of an object, in Newtons. 
Looking at the formula more closely, we see: 

• The term ‘weight’ is also known as force of gravity. 

• Like all forces, Fg depends on two objects:  

- our planet Earth, which exerts a gravitational field strength ‘g’ all 
around it, in N/kg. 

- some other object, such as you, that is being pulled to Earth by its 
field strength. 

• The field strength ‘g’ is equal to 9.8 N/kg at or near Earth’s surface, but is 
much weaker as you move away a significant distance from the surface. 

• Other objects in space, like stars, planets and moons, each have their own 

gravitational field strengths ‘g’ that may be stronger or weaker than that of 
Earth, depending on their mass and the distance away from them. 

 

Although it may not seem so, ‘g’ exists everywhere in space! Its value varies from 

one location to another, so that  Fg = mg  is not very useful for finding the force of 
gravity that exist between two objects. 
 
Through experimental research, it was Isaac Newton who first determined how the 
force of gravity is affected in space: 

� mass attracts mass, and the size of each mass directly affects the amount of  

 attraction between them, so that    F αααα  Mm 

� the size of the force is inversely dependent on the square of the distance 
between the centers of mass of the two objects, so that:   

     F αααα  
1

R2
 

� from graphical analysis, an equation was established, with the slope being 

the universal constant ‘G’, and the equation being 
 

     Fg = G
Mm

R2           where  G = 6.67 x 10-11 
Nm2

kg2  

 
This new formula is useful, because it allows us not only to determine the force of 
attraction between two objects, but also calculate weight on other planets, or at great 

altitudes above Earth, where ‘g’ is not 9.8 N/kg. 
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Example 1: Determine the force of attraction between a 35 kg dog and a 7.6 kg cat, 

watching each other from a distance of 4.8 m. (7.7 x 10
-10

 N) 
 

      (see Gravitation Ex 1 for answer)   
 
 

Example 2: 

(a) Find the weight of a 50 kg person on Earth, using F
g
 = mg. 

(b) Find the same weight on Earth, using F
g
 = G

Mm

R2
.     

(c) Find the weight of this person at an altitude of 170 km.    

 

      (see Gravitation Ex 2 for answer)   
 
 
Consider the answers to Example 2: why is this weight less than at Earth’s 
surface? Because the gravitational field strength of the Earth is weaker as you 
move further away from its center of mass.  
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Gravity in Space 
Recall: the space around a mass in which it exerts a gravitational influence is called its 
field. In this space it can exert a force on another mass because of its gravitational field 

strength ‘g’, measured in N/kg.  On Earth’s surface, that field strength is 9.8 N/kg, but 

elsewhere the value for ‘g’ is quite different. 

 

To find the gravitational field strength ‘g’ at any location, combine both versions of Fg: 

 

  F
g = mg    and    F

g = G
Mm

R2
     

 

�equate these two to get mg = G
Mm

R2
     

 

 �cancel out small mass m and             g = 
GM

R2
 

 
Here M is the mass of the Earth (or any central mass), and R is the distance you 

are from the center of that mass.  Note that 

    

  R = radius of the Earth  +  altitude 

 

 

 

Example 3:  Find ‘g’ at an altitude of 100 km.      
 

      (see Gravitation Ex 3 for answer)  

 

 

 
All masses have a gravitational field strength surrounding them. This means the 
force of gravity can act on you anywhere in space, due to any number of objects 
that pull on you in different directions. For example, the Earth’s oceans are spread 
throughout the planet due to its gravitational field strength pulling on the bodies of 
water. But the moon also exerts a pulling force of gravity on Earth’s oceans, 
producing the daily high and low tides seen by any coastal region. 
 
With different forces acting in different directions, we can find the net force on 
one mass due to the combined gravitational forces of two other masses in a 
specific position in space. 
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Example 4:  Determine the net force acting on Planet B by the other two 

planets, as illustrated below: 
 

2.5 x 10
24
 kg    A 

 
 
 
 

  3.6 x 10
9
 m 

 
 
 
 

5.0 x 10
24
 kg      7.0 x 10

9
 m    9.2 x 10

24
 kg 

 

     B            C 
 
To solve this type of problem, it may be helpful to follow this series of steps: 
(1) Draw a free-body vector diagram showing the forces acting on Planet B. 

(2) Calculate force FAB using information on those two planets only. 

(3) Calculate force FBC in the same way as in (2).  

(4) Determine the resultant force from the vector addition of FAB and FBC. 

 

      (see Gravitation Ex 4 for answer)   
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Ratio solutions for the Gravitation Law.  
Recall from math relationships:    

� if   a αααα b        ���� then    
a

2

a1

 = 
b

2

b1

 

 

� if   x αααα  
1

y       ����then       
x

2

x1

 = 
y

1

y2

 

 

Therefore,in a two-planet system: 

      F = G
Mm

R2
       becomes  

F
B

FA

 = (
M

B

MA

)(
m

B

mA

)(
R

A

2

RB

2
)  

 

� or, F
B
 = F

A
(
M

B

MA

)(
m

B

mA

)(
R

A

2

RB

2
)  

 
This appears complex, but is in fact based on some very simple math principles: 

� if one mass changes, the force changes proportionally; e.g., if the mass of one of 

the two planet doubles, so does the Fg between them. 
� if both masses change, the force changes proportionally for each mass; e.g., if the 

mass of both planets double, the Fg between them increases by 2 x 2 = 4 times 
� if the distance between the two planets changes, the force between them  
decreases by that factor squared; e.g., if the distance between the planets 

doubles, the Fg between them is decreased to (
1

2
)
2
=

1

4
 

Example 5: Examine this two-planet situation: 

            M 

  m 

 

  

         distance R = 1.4 x 10
9
 m 

 

       Fg = 4.1 x 10
21
 N between the two planets 

 

The above is now changed, as follows; find the new gravitational force  

in each case: 

(a) m is tripled. 

(b) M is tripled, and m is reduced by half. 

(c) M is one-tenth as large, and R is tripled. 

(d) m is quadrupled, and R = 9.5 x 10
8
 m.   

 

      (see Gravitation Ex 5 for answer)   
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Kepler's Three Laws of Planetary Motion 
In the 1700’s, Johannes Kepler used Newton’s work to establish the nature of a 
body’s orbital path around a central mass. This is what he found: 

1. Planetary orbits are elliptical, with the sun at one focus. 
• Note that many orbits are very nearly circular; for such cases, we can 

state that Fc = Fg 
2. A line joining the center of any planet with the sun, traces out equal areas in 

equal times. 
• This statement tells us that for very elliptical paths, a planet travels at 

greatest speed closest to the Sun (where ‘g’ is greatest) and travels 
slowest at its furthest point from the Sun (where ‘BgB’ is weakest). 

3. For a given central mass, if R = the average orbital radius, and T = the 

orbital period, then the ratio of  
R3

T2
  is a constant.  

 

planet (orbital mass m) 
planet moves 
faster here 

(g is strong)    

   ∆∆∆∆t          planet moves 

              ∆∆∆∆t    slower here 

           Sun (central mass M)      (g is weak) 

 

 

 

Newton's Synthesis 
We can derive Kepler's Third Law from Newton's Second Law and find a way to get 

Kepler's Constant.  Start by examining a satellite of mass ‘m’ travelling in a stable orbit 

with period of revolution ‘T’ around a central planetary mass ‘M’.   
 

If we assume the elliptical orbit is very nearly circular, then once again  Fc = Fg .  
 

� combine   F
g
 = 

GMm

R2
  and   F

c
  =  m

4ππππ2R

T2
:       

GMm

R2
 =  m

4ππππ2R

T2
 

 

� cancel orbital mass ‘m’ and rearrange to get  
R3

T2
= 
GM

4ππππ2
    

� G, M, and 4ππππ
2
 are all constant (remember, ‘M’ is the central mass), so 

  Kepler's Constant is therefore     k =  
GM

4ππππ2
. 
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Example 7: A telecommunications satellite orbits the Earth once every 24 hours in 

what is called a geosynchronous orbit.  What is the altitude of this satellite?   

 

      (see Gravitation Ex 7 for answer)   

 
 

To use Kepler's Third Law, you must have R and T data for one satellite so that 

you can find the constant k, or you can use ratio solutions. 

 

If 
R3

T2
 = k,   then    R3 = kT2 

 

We now have    (
R

B

RA

)
3
=  (

T
B

TA

)
2
 � use this to solve using ratios 

  
Note: In order to simplify meaning, the period (year) and radius measurements of planets 
are often made in terms of  Earth measurements. A planet's year may be given  in terms 
of Earth days or years. A planet's distance from the Sun may be given in terms of Earth's 

distance from the Sun. This distance is called one astronomical unit (AU). 

 

Example 8:  Mercury's Year = 88 Earth days and its distance from the Sun is 0.37 

AU.  Find the orbital radius of Venus if its year = 224.7 Earth days.  

 

       (see Gravitation Ex 8 for answer)   
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Gravitational Potential Energy in Space 
When we are near the Earth's surface, we calculate the ∆∆∆∆Ep of an object as the work 

done to lift the object to its new height, where Ep = mgh near the Earth's surface. The 

value of “h” is measured relative to some point that is chosen by you to be where the 
object will not fall any further. For example: 

� For a pendulum, h = 0 at the bottom of its swing. 

� For an object that is dropped, h = 0 where the object lands (usually on the ground). 
 

However, because g changes with altitude, we can't use this formula in space.  In space, 

if we move one mass away from another far enough (so that R = ∞), we will move it out 

of that mass's field and so Ep will finally equal zero. 

 

       ∞∞∞∞ 

 Ep = 0  here    Whenever an object is lifted, potential energy 
      is increased, resulting in positive work done. 

       

     

 Work = ∆∆∆∆Ep   If that object is lifted to infinity, where Ep = 0, 
      then the potential energy of the object must be 
 object is lifted,   less than zero at any height that is closer than 

 so Ep increases   infinity; this includes the earth’s surface. 

 

      

      Put another way, when an object falls, Ep  

  Ep < 0  here    decreases. Since the Ep decreases as the object 

      falls from infinity to Earth, and since Ep = 0 

      at R = ∞, the Ep becomes increasingly negative. 

            Earth 

 

 

We need to find an expression for Ep of an object at the surface of the Earth, compared 

with Ep = 0 at R = ∞. 
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From graphical analysis of Fg vs. R: (remember that Fg = 
GMm

R2
) 

 

Fg     � from any point R out to ∞, 

             Fg ∝∝∝∝ 
1

R2
         work done = area under the graph 

     � using calculus,  W = ∆∆∆∆
GMm

R
 

 

 

 

     R               --> ∞ 

 

� but  W  =  ∆∆∆∆Ep = Ep (f) - Ep (i)   =  0 - Ep (i) 
 

� Ep is negative for any value of R < ∞; that is,   Ep = -
GMm

R
 

 

 
If this makes no sense to you, don’t panic! The above is only a short, non-calculus 

explanation for the new formula for Ep. What you must know is this: the formula  

Ep = -
GMm

R
   is used to find potential energy for an object ‘m’ in space relative to: 

• the central planetary mass ‘M’. 

• Ep = 0 at infinity. 

 

 

 

Example 9: Find the potential energy (relative to infinity) of a 50. kg person flying 

at an altitude of      1.0 x 10
4
 m above Earth’s surface, relative to infinity.   

 

      (see Gravitation Ex 9 for answer)   
 
 

Example 10: If that 50. kg person was in a space shuttle orbiting at an altitude 

of 250 km, what would be her new potential energy, relative to infinity? 

 

      (see Gravitation Ex 10 for answer)   
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Now examine the situation below where work is done to move an object further 
away from Earth: 

        Ep (i)             Ep (f) 

                Work done = ∆∆∆∆Ep 

 
             Object is moved away from Earth 

Earth       Ri 

      Rf 

 

 

Recall that work is equal to change in energy. In this example, the work done = 

the difference between the initial Ep and the final Ep. 
 

  W = ∆Ep = Ep (f) - Ep (i) =  - 
GMm

Rf

 - (-
GMm

Ri

) 

  W = GMm(
1

Ri
 - 

1

Rf
)  � energy added is positive energy. 

 

Example 11: Determine the work done to move a 3.5 x 10
4
 kg cargo of space junk 

from an altitude of 430 km above the Moon’s surface to a radial distance of           

2.8 x 10
6
 m away.   

 

      (see Gravitation Ex 11 for answer)   
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Conservation of Energy in Space 
Recall that energy cannot be created or destroyed; it can only be converted from 
one form to another. In other words, regardless of what energy is being used or 
produced, the total energy contained in any system stays the same. 
 
In space, any object:  

- will always have gravitational potential energy relative to some galaxy, star, 
planet, or moon. 

- may have kinetic energy, if it is moving relative to some galaxy, star, planet 
or moon. 

- will not likely produce any significant heat or other form of wasted energy 
in its movement, due to the lack of friction from wind resistance. 

 
Therefore, to calculate the total energy of a moving mass in space, we can state 
that: 

    Et = Ek + Ep 
 

� substitute in the proper formulas to obtain 
 

     Et  =  
1

2
mv

2
  – 
GMm

R
 

 

 where:  � m is the mass of the moving object 

�M is the mass of the object exerting the gravitational pull (a  
planet, moon, etc.) 

   �R is the distance between the two objects 

   �v is the speed of the object 
 
Use total energy to find unknown quantities for any mass that changes its speed or 
distance in space from a planetary or stellar object. 
 

Example 12: A 12 000 kg spaceship is 7.2 x 10
8
 m from the center of a planet that 

has a mass of 5.1 x 10
25
 kg. As it “falls” back to the planet’s surface, the spaceship 

gains 9.0 x 10
11
 J of kinetic energy. What is the radius of the planet? 

 
 

     (see Gravitation Ex 12 for answer) 
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Conservation of energy can be used to determine a value called the escape velocity 
of a spacecraft. The escape velocity is the minimum velocity required for the craft 
to escape a planet’s gravitational field. This means that:  

� A body has "escaped" from a gravitational field if it is so far from the mass 

that generates the field that once it has stopped, its Ep = 0. 
� At a minimum speed, the spacecraft will (in theory) reach infinity and stop, 

so that Ek = 0. 
 
Therefore, in this system where the minimum velocity is required, the total energy 

Et = 0! In terms of conservation of energy: 

 

total energy before = total energy after:  Ek + Ep = 0 
 

Here the speed of the escaping object at the planet’s surface must be great enough 

to provide the Ek needed so that Ek = - Ep.  
 

At the planet’s surface, Ep = - 
GMm

R p

 where Rp = radius of the planet 

 

� ∴    
GMm

R p

= 
1

2
mv

2

    ---> cancel spacecraft’s mass and solve for v 

 

Example 13: Determine the escape velocity for any spacecraft launched from 

the surface of Mars, which has a planetary mass of 6.40 x 10
23
 kg and a radius of  

3.4 x 10
6
 m.    

 

      (see Gravitation Ex 13 for answer)   

 

 

Finally, consider the total energy possessed by a satellite in a stable orbit. 

 

Total energy = kinetic energy at orbit speed + potential energy at orbital altitude 

 

Don’t forget that  R = radius of planet + altitude 

 

To begin, the orbital speed must be determined. Since the satellite is orbiting in a 

circle, use Fc = Fg to find this speed. 

 

Then, solve using    E
T
 = Ek + Ep   where   Ep = -

GMm

R
  (relative to infinity) 
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Example 14: Determine the total energy possessed by the Moon as it orbits the 

Earth.    

 

      (see Gravitation Ex 14 for answer)   

 
 

Note that the total energy possessed by any object in a stable orbit is always equal to half 
of the potential energy contained in that object, or  
 

   ET (stable orbit) =  -
1

2

GMm

R
 

 
This can be proven with algebraic substitution. 



Example 1: Determine the force of attraction between a 35 kg dog and a 7.6 kg cat, 

watching each other from a distance of 4.8 m.  

 

  

 

 

 

 

 

 

 



Example 2: 

(a) Find the weight of a 50 kg person on Earth, using F
g
 = mg. 

 

 

 

 

 

 

 

 

 

 

(b) Find the same weight on Earth, using F
g
 = G

Mm

R2
.     

 

 

 

 

 

 

 

 

 

(c) Find the weight of this person at an altitude of 170 km.    

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 3:  Find ‘g’ at an altitude of 100 km.      
 

 

 

 

 

 

 

 

 



Example 4:  Determine the net force acting on Planet B by the other two 

planets, as illustrated below: 

 

2.5 x 10
24
 kg    A 

 

 

 

 

  3.6 x 10
9
 m 

 

 

 

 

5.0 x 10
24
 kg      7.0 x 10

9
 m    9.2 x 10

24
 kg 

 

     B            C 
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Example 5: Examine this two-planet situation: 

            M 

  m 

 

  

         distance R = 1.4 x 10
9
 m 

 

 

    Fg = 4.1 x 10
21
 N 

 

The above is now changed, as follows; find the new gravitational force  

in each case: 

(a) m is tripled. 

(b) M is tripled, and m is reduced by half. 

(c) M is one-tenth as large, and R is tripled. 

(d) m is quadrupled, and R = 9.5 x 10
8
 m.   
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Example 6:  

(a) Determine the stable parking orbit velocity for a surveying satellite located   

230 km above the moon’s surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) If that orbital radius were reduced by one-tenth, by what factor would the 

orbiting speed increase?   

 

 

 

 

 

 

 

 

 

 



Example 7: A telecommunications satellite orbits the Earth once every 24 hours in 

what is called a geosynchronous orbit.  What is the altitude of this satellite?   

 

 

 

 

 

 

 

 

 



Example 8:  Mercury's Year = 88 Earth days and its distance from the Sun is 0.37 

AU.  Find the orbital radius of Venus if its year = 224.7 Earth days.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 9: Find the potential energy (relative to infinity) of a 50. kg person flying at 

an altitude of 1.0 x 10
4
 m above Earth’s surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 10: If that 50. kg person was in a space shuttle orbiting at an altitude 

of 250 km, what would be her new potential energy, relative to infinity? 

 

 

 

 

 

 

 

 



Example 11: Determine the work done to move a 3.5 x 10
4
 kg cargo of space junk 

from an altitude of 430 km above the Moon’s surface to a radial distance of 2.8 x 10
6
 

m away.   

 

 

 

 

 

 

 

 

 



Example 12: A 12 000 kg spaceship is 7.2 x 10
8
 m from the center of a planet that 

has a mass of 5.1 x 10
25
 kg. As it “falls” back to the planet’s surface, the spaceship 

gains 9.0 x 10
11
 J of kinetic energy. What is the radius of this planet? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 13: Determine the escape velocity for any space shuttle launched from 

the surface of Mars, which has a planetary mass of 6.40 x 10
23
 kg and a radius of   

3.4 x 10
6
 m.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 14: Determine the total energy possessed by the Moon as it orbits the 

Earth.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


