1 - Work

Energy: the ability to do work.
Work and energy are:
Scalar
Measured in Joules (J)

Work can be defined as either:
A change in

or
 distance

In physics we talk about work being done...
on an object.
Ex.If I hold a 30 kg weight at a height of 1.5 m , I'm using energy, therefore...However the work is not being done on the weight, it is being done on my muscles.Think of it like this: though I am exerting a force on the weight, its distance moved is zero, therefore NO work is done on it.

Ex. If I were to lift the 30.0 kg weight up off the ground to a height of 1.5 m , how much work would be done on the weight?

$$
\begin{aligned}
W & =m g \Delta h \\
& =(30.0 \mathrm{Kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~m}) \\
& =440 \mathrm{~J}
\end{aligned}
$$

When an object is lifted against gravity the formula:

$$
W=m g \Delta h
$$

Where: $\mathrm{m}=$ mass
$g=$ acceleration due
$\Delta h=$ to gravity

Ex. A 10.0 kg pumpkin is moved horizontally 5.00 m at a constant velocity across a level floor using a horizontal force of 3.00 N . How much work is done in moving the pumpkin? $F_{N} F_{\mathrm{F}}$

$$
\begin{aligned}
W & =F_{\text {app }} d \\
& =(3.00 \mathrm{~N})(5.00 \mathrm{~m}) \\
& =15.0 \mathrm{~J}
\end{aligned}
$$

Note: Use applied force, not \qquad net force

Ex. A 50.0 kg banana box is pulled 11.0 m along a level surface by a rope. If the rope makes an angle with the floor of 35° and the tension in the rope is 90.0 N , how much work is done on the box?

$$
W=F_{x} d=F_{x} \cos 35 d=811 \mathrm{~J}
$$

Note: Use on the \qquad component of the force that is in the direction of displacement ie. if we move in the x-direction then we only use F_{x}.

Ex. A 3.0 kg pineapple is held 1.2 m above the floor for 15 s . How much work is done on the pineapple?

$$
\begin{aligned}
W & =F d \leftarrow \begin{array}{l}
\text { zero distance } \\
\text { covered }
\end{array} \\
& =0 \mathrm{~J}
\end{aligned}
$$

Note: No \qquad distance means no work

Ex. A 1385 kg car traveling at $61 \mathrm{~km} / \mathrm{h}$ is brought to a stop while skidding 42 m . What is the work done on the car by frictional forces?

$$
\begin{array}{ll}
v=0 & F_{\text {ret }}=F_{f}=m a=-4737 \mathrm{~N} \\
v_{0}=16.94 & \\
a=? \\
d=42 & W=F_{f} d=-2.0 \times 10^{5} \mathrm{~J} \\
a=\frac{v^{2}-v_{0}{ }^{2}}{2 d} & \\
=-3.42 \mathrm{~m} / \mathrm{s}^{2} &
\end{array}
$$

Note: Work can be negative the work acts in the negative
if the force doing direction.

