Potential Energy: Stored energy
Examples:
Chemical: gasoline, food, batteries elastic: bungee cord, trampoline, bow electrical: static charges

Gravitational Potential Energy:

$$
E_{p}=m g h
$$

Where:
$\mathrm{m}=$ mass

Gravitational energy is always measured...

 relative to a reference point- In this class we will focus on... gravitatronal potentential energy
- This is stored energy due to... an object's position (height)
- Remember:
energy can be converted into different forms by doing work

Ex. A 15.0 kg textbook is sitting on a 1.20 m tall table. If the book is lifted 0.80 m above the table, how much gravitational potential energy does it have:
a. with respect to the table?

$$
\begin{aligned}
E_{p} & =m g h=(15.0)(9.80)(0.80) \\
& =120 \mathrm{~J}
\end{aligned}
$$

b. with respect to the floor?
$E_{p}=m g h=(15.0)(9.80)(2.00)$

$$
=294 J
$$

Ex 2. An archer pulls on a bow string with an average force of 240 N while drawing the arrow back a distance of 0.200 m . Calculate the potential energy of the bowarrow system.
HINT: The work done to the bow is all being stored as potential energy.

$$
\begin{aligned}
& W=\Delta E_{p}=F d=(240 \mathrm{~N})(0.200 \mathrm{~m}) \\
&=48 \mathrm{~J} \\
& \text { all work done } \\
& \text { is berg stored }
\end{aligned}
$$

How does the work done on the cart compare to its gain in potential energy?
Using all the words work, height, force and distance explain why ramps can be useful machines.

