Kinetic Energy: energy of motion

- Scalar
- Measured in Joules

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Where:
$\mathrm{m}=$ mass
$v=$ speed
(not velocity...)

Ex. A 60.0 kg student is running at a uniform speed of 5.70 m / s. What is the kinetic energy of the student?

$$
\begin{aligned}
E_{k}=\frac{1}{2} m v^{2} & =\frac{1}{2}\left(60.0 k_{k}\right)(5.70 \mathrm{~m} / \mathrm{s})^{2} \\
& =975 \mathrm{~J}
\end{aligned}
$$

Ex. The kinetic energy of a 2.1 kg rotten tomato is $1.00 \times 10^{3} \mathrm{~J}$. How fast is it moving?

$$
\begin{aligned}
E_{k}=\frac{1}{2} m V^{2} \quad V=\sqrt{\frac{2 E_{k}}{m}} & =\sqrt{\frac{2\left(1.00 \times 10^{3}\right)}{2.1}} \\
& =31 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The Work Energy Theorem

- If a net force acts on an object it must be accelerating
- This must be proportional its change in ER
- Therefore

Ex. A sprinter exerts a net force of 260 N over a distance of 35 m . What is his change in kinetic energy?

$$
\begin{aligned}
\Delta E_{k} & =F_{k}+d \\
& =2601)(35 \mathrm{~m}) \\
& =9100 \mathrm{~J}
\end{aligned}
$$

Ex. A student pushes a 25 kg crate which is initially at rest with a force of 160 N over a distance of 15 m . If there is 75 N of friction, what is the final speed of the crate?

$$
\frac{1}{2} m v_{f}^{2}=\text { Fret } d
$$

$$
\begin{aligned}
V & =\sqrt{\frac{2 F_{n+2}+d}{m}}=\sqrt{\frac{2(8 s N)(15 \mathrm{~m})}{25 \mathrm{~kg}}} \\
& =10 . \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Worksheet 7.3 -Kinetic Energy

1. A 3.0 kg ewok is traveling at a constant speed of 7.5 m / s. What is its kinetic energy?
2. The kinetic energy of a 20.0 N droid is $5.00 \times 10^{2} \mathrm{~J}$.

What is the speed of the droid?

