The Law of Conservation of Energy:
Energy cannot be created or destroyed, only Changed from one form into another

This is similar to a pendulum:

Max Ex

- When only conservative forces (like gravity) work on an object... $E_{k} \rightarrow E_{p}$ and $E_{p} \rightarrow E_{k}$
- When forces like friction are at work then energy is not conserved.
- Friction converts some energy into HEAT

Ex: While jumping over The Great Wall of China an 82 kg skateboarder is needs to leave the ramp traveling at 78 $\mathrm{km} / \mathrm{h} . \div 3.6=21.67 \mathrm{~m} / \mathrm{s}$
a) How much potential energy does he need to start with?

$$
\begin{aligned}
& E_{k i}+E_{p i}=E_{k f}+E_{p f} \\
& E_{p_{i}}=E_{k_{f}}=\frac{1}{2} m v^{2}=\frac{1}{2}(82)(21.67)^{2}=19247
\end{aligned}
$$

b) What minimum height of ramp should he use? $=19000 \mathrm{~J}$

$$
E_{p_{i}}: m g h_{i} \quad h_{i}=\frac{E_{m}}{m g}=\frac{19297}{(82)(9.8)}=24 \mathrm{~m}
$$

Imagine a ball being thrown up into the air:
O Ep

Ex 10 O O Ex

As the ball travels upwards E_{K} is converted into As the fall falls down Ep_ is converted into EK

The Law of Conservation of Energy:

$$
\begin{aligned}
& E_{i}=E_{f} \\
& E_{p_{i}}=E_{k_{f}}+E_{p f}
\end{aligned}
$$

$$
\frac{1}{2} m v_{i}^{2}+m g h_{i}=\frac{1}{2} m v_{f}^{2}+m g h_{f}
$$

Ex: A trampoline dunk artist is bounces to a maximum vertical height of 4.8 m before launching himself towards the hoop. At the top of his arc he is 3.2 m above the ground.
How fast is he toweling at this point?

Ex: A 65 kg snowboarder starts at rest, travels down a hill into a gulley and back up the other side as shown. Find his speed at top of the $2^{\text {nd }}$ hill.

$$
\begin{aligned}
E_{p_{i}}+E k_{i}= & E p_{f}+E_{k_{f}} \\
E_{p_{i}}=E_{k_{f}} \quad v & =\sqrt{2 g h_{i}} \\
m g h_{i}=\frac{1}{2} m v_{f}^{2} \quad & =\sqrt{2(9.8)(20)} \\
& =20 . \mathrm{m} / \mathrm{s}
\end{aligned}
$$

