

Ex. Lover's Leap is a 122 m vertical climb. The record time of 4 min 25 s was achieved by Dan Osman (65 kg). What was his average power output during the climb?

Ex. A $1.00 \times 10^{3} \mathrm{~kg}$ car accelerates from rest to a velocity of $15.0 \mathrm{~m} / \mathrm{s}$ in 4.00 s . Calculate the power output of the car. Ignore friction.

Ex. A student uses 140 N to push a block up a ramp at a constant velocity of $2.2 \mathrm{~m} / \mathrm{s}$. What is their power output?

$$
\begin{aligned}
P=F_{V} & =(140 \mathrm{~N})(2.2 \mathrm{~m} / \mathrm{s}) \\
& =310 \mathrm{~W}
\end{aligned}
$$

Note that this formula is only useful when...
velocity is constant

Power Worksheet

1) A 45.0 kg student runs at a constant velocity up the incline shown. If the power output of the student is $1.50 \times 10^{3} \mathrm{~W}$, how long does it take the student to run the 9.0 m along the incline?

2) A 20.0 kg object is lifted vertically 2.50 m in 2.00 s at a constant velocity. Calculate the power output of the student.
3) A 2.00 kg object is accelerated uniformly from rest to $3.00 \mathrm{~m} / \mathrm{s}$ while moving 1.5 m across a level frictionless surface. Calculate the power output.
4) An $8.5 \times 10^{2} \mathrm{~kg}$ elevator is pulled up 32.0 m at a constant velocity of $1.40 \mathrm{~m} / \mathrm{s}$. Calculate the power output of the motor.
