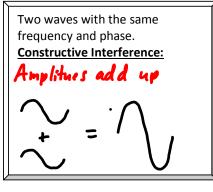
Unit 8: Waves

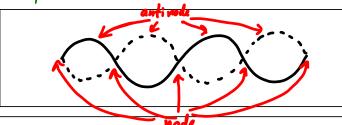

6 - Interference

When two waves travel in the same medium they affect the medium independently. To determine their **overall** effect we use the principle of superposition.

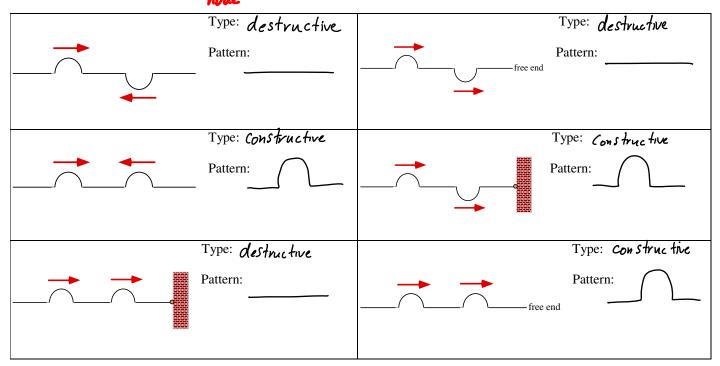
Principle of Superposition:

The total amplitude of the waves is equal to...

the sum of the amplitudes of the individual waves.

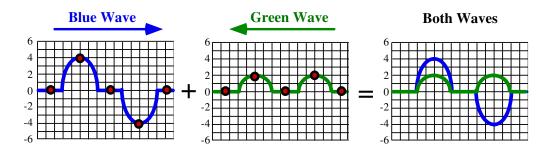

Two waves with the same frequency and opposite phase.

Destructive Interference:


Amplifudes conce

Standing Waves

- Standing waves are caused by <u>Constructive</u> and <u>clestructive</u> <u>inferference</u>.
- Areas of complete destructive interference have <u>no</u>
 amplitude and are called <u>nodes</u>
- Areas of complete constructive interference have arge amplitudes and are called anti-nodes

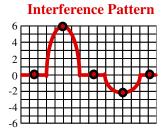

- When a wave hits a fixed boundary it will <u>reflect</u> and its amplitude.
- If a series of waves are sent along a string the reflected pulse will...
 Interfere with itself.
- If the waves are sent at just the right frequency we will create a Standing Wave.

Sample Problems: Interference of Waves

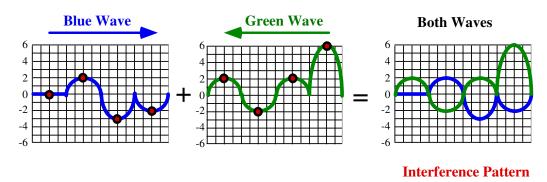
Draw the interference pattern for the combinations of waves shown below. Show your calculations for the amplitude at each marked () location .

1.

 1^{st} dot: Amplitude = 0 + 0 = 0


 2^{nd} dot: Amplitude = 4 + ____ = 6

 3^{rd} dot: Amplitude = ____ + ___ = 0


4th dot: Amplitude = -4 + ____ = ____

5th dot: Amplitude = ____ + ___ = ___

Check that the amplitudes drawn in the interference pattern match the values that you calculated for each

2.

 1^{st} dot: Amplitude = $0 + 2 = ____$

 2^{nd} dot: Amplitude = ____ + -2 = ____

 3^{rd} dot: Amplitude = ____ + ___ = ____

4th dot: Amplitude = ____ + ___ = ____

Draw the interference pattern...