Work, Energy and Momentum Notes

1 - Work and Energy

Work is defined as the transfer of energy from one body to another.

$$
W=\Delta E
$$

We can calculate the work done on an object with:

$$
W_{\text {the units of work are Nm or Joules }}
$$

Note that these are the same units as torque yet their values are used to describe very different quantities.

Example 1 - Work against Gravity

How much work is required to lift a 2.0 kg textbook from the floor to a height of 1.5 m at a constant velocity?

Note:
$\mathrm{W}=\mathrm{Fd}$, but what force do we need to exert to lift the book at a constant velocity?

$$
F_{u p p}=F_{g}
$$

$$
\omega=F_{g} d=m_{g} d
$$

$$
=(2.0)(9.8)(1.5)=29.4 \mathrm{~J}
$$

Since the velocity is constant what is the net force acting on the book?

$$
F_{\text {net }}=0
$$

Example 2 -Work on an object

How much work is done on a 4.0 kg medicine ball that is held at a height of 1.8 m for 10 s ?

Note:

Is energy being used to hold the ball in this position? Y/ es
Is work actually being done ON THE BALL?

$$
\text { No! } \quad W=0 J
$$

Example 3 - Forces at an angle

The plucky youngster pictured below is pulling his sled at a constant velocity of $1.2 \mathrm{~m} / \mathrm{s}$. He pulls the 15 kg sled with a force of 35 N at an angle of 40° to the horizontal. How much work does he do in pulling the sled 20 m ?

Note:
Draw an FBD showing the forces at work on the sled.
Break $\mathrm{F}_{\text {boy }}$ into its vertical and horizontal components. Does the vertical component of the force do any work?

Rule: When finding the work done on an object we only consider..

Example 4 - $\mathrm{F}_{\text {net }}$ vs. $\mathrm{F}_{\text {app }}$
A biology student is pushing a rope 15 m across a flat surface. The student pushes the rope with a force of 220 N while the force of friction is 120 N . How much work is the student doing?

Note: To find the amount of work done by the student should we used $\mathrm{F}_{\text {net }}$ or $\mathrm{F}_{\text {app }}$?

$$
\begin{aligned}
W=F_{\text {app }} d & =(220 \mathrm{~N})(15 \mathrm{~m}) \\
& =3300 \mathrm{~J}
\end{aligned}
$$

Rule: When finding the total work done on an object we always use: $F_{\text {app }}$
Example 5 - To scalar or not to scalar?
Work is the product of a scalar and a vector, but work is a SCalar.. However work can be positive or negative...but how?

Imagine that you bring a 1.0 kg basketball from the floor to the top of a 1.0 m table. How much work did you do?

$$
\begin{aligned}
U=F_{g} d=m g d & =(1.0)(9.8)(1.0) \\
& =+9.8 \mathrm{~J}
\end{aligned}
$$

Which way did you exert the force? Up
Did the energy of the bar increase or decrease?

Example 6 - Work-Energy Theorem for Net Force

It is worth noting that the work done by the net force on an object is equal to the change in its kinetic
energy: $W=F_{\text {net }} d \quad F_{\text {nut }}=m a$

$$
\begin{aligned}
& \text { mad) } \quad v^{2}=v_{0}^{2}+2 a d \\
& =\frac{1}{2} m\left(v^{2}-v_{0}^{2} \quad(a d)=\frac{1}{2}\left(v^{2}-v_{0}^{2}\right)\right. \\
& =\frac{1}{2} m \Delta v^{2}=\Delta E_{k}=F_{n u}+d
\end{aligned}
$$

Example:

A 1270 kg car accelerates from $15 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ over a distance of 75 m . Determine the average net force that was required to do this.

$$
\begin{aligned}
& \Delta E_{k}=F_{\text {mat }} d \\
& f_{\text {nat }}=\frac{\Delta E_{k}}{d}=\frac{\frac{1}{2} m \Delta v^{2}}{d}=\frac{\frac{1}{2} m\left(v^{2}-v_{0}^{2}\right)}{d} \\
&=\frac{\frac{1}{2}(1270)\left(25^{2}-15^{2}\right)}{(75)}=3390 \mathrm{~N}
\end{aligned}
$$

Now suppose the ball rolls off the table and falls straight down to the floor. How much work was done on the ball?

$$
W=\Delta E=-9.8 J
$$

Which way is the force working on the ball now? down
Did the energy of the ball increase of decrease)

Example:

The graph shows a variable force working on a 15.0 kg mass on a level surface which is initially at rest. Find:
a. The total amount of work done.
b. The final speed of the object assuming friction is
negligible. $\quad A_{1}=\frac{b \cdot h}{2}=\frac{(2)(20)}{2}=20 \mathrm{~J}$
a.) $\quad \begin{aligned} & A_{2}=6 \cdot h=(4)(20)=80 \mathrm{~J} \\ & A_{3}=\frac{b . h}{2}=\frac{(4)(20)}{2}=40 \mathrm{~J}\end{aligned}$
$W_{T}=140 \mathrm{~J}$
b.)

$$
\begin{aligned}
& \text { b.) } \\
& W=\Delta E_{K} \\
& W=E_{k_{f}}-F_{K_{i}} \\
& W=\frac{1}{2} m V^{2}
\end{aligned}
$$

To summarize our work energy relationships:

$$
W_{\text {Tob }}=\Delta E_{T}=F_{\text {apo }}
$$

Types of Energy:
There are many forms of energy: mechanical, thermal, electrical, nuclear, chemical etc. One form can be converted into another by doing work.

In this chapter will be concerned mostly with potential and kinetic (and just a hint of thermal) energy.

Remember:
Potential energy is always..relative to a reterence point.

Cause math is fun! Deriving the E_{p} formula...

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{Fd}
$$

(in this case $\mathrm{F}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$)

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgd}
$$ (let's change letters just for fun, and call h the vertical displacement)

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

HOORAY!

Kinetic Energy $\left(\mathbf{E}_{\mathbf{k}}\right)$: energy of motion

$$
E_{k}=\frac{1}{2} m v^{2}
$$

Cause math is fun!
Deriving the E_{k} formula...

$$
\begin{aligned}
& \mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \operatorname{adad}^{\left(\text {take } \mathrm{v}_{\mathrm{o}}=0\right)} \\
& \mathrm{v}^{2}=\underset{\mathrm{m}}{2 \mathrm{ad}} \quad \begin{array}{l}
(\text { but } \mathrm{a}=\mathrm{F} / \mathrm{m}) \\
\mathrm{v}^{2}=\frac{2 \mathrm{Fd}}{\mathrm{~m}}
\end{array}
\end{aligned}
$$

(but $\mathrm{Fd}=\mathrm{W}=\mathrm{E}_{\mathrm{k}}$, when $\mathrm{v}_{\mathrm{o}}=0$)

$$
\mathrm{v}^{2}=\frac{2 \mathrm{E}_{\mathrm{k}}}{\mathrm{~m}}
$$

$$
\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2}
$$

The Law of Conservation of Energy
Energy cannot be created or \qquad destroyed ,only \qquad $\frac{\text { changed }}{\text { in energy is always }}$ from one form into another.
Therefore in a closed system the \qquad total change \qquad ZERO .

Back in grade 11 it really was that easy...
When non-conservative forces (such as friction) act on an object, not all energy is transferred between kinetic and potential. This is what physicists have termed REALITY. Deal with it.

The "work" done by friction does produce another form of energy known as HEAT (aka. Thermal) This energy is quickly conducted or radiated in all directions and effectively dispersed.

Consider a block of wood sliding down a ramp with a small amount of friction.
How would the block's kinetic energy at the bottom compare to its potential energy at the top? Why? $E_{p i}>E_{K_{f}}$ some $E_{p} \rightarrow E_{H}$

The fact that the amount of energy in the block decreases as it slides down the ramp doesn't change the fact that the total energy in the system is CONSTANT. We need modify our earlier equation for The Law of Conservation of Energy only slightly:
Total Energy Initial = Total Energy Final

$$
E_{k_{i}}+E_{p i}=E_{k_{f}}+E_{p f}+E_{H}
$$

Example
A 5.0 kg block of wood is now pushed down a ramp with a velocity of $6.0 \mathrm{~m} / \mathrm{s}$. At the bottom of the ramp it is traveling at $7.5 \mathrm{~m} / \mathrm{s}$.
a. How much thermal energy is generated due to friction?

$$
\begin{array}{rl}
E_{k_{i}}+E_{p i}=E_{k_{f}}+E_{p f}^{0}+E_{H} & 1.5 \mathrm{~m} \\
E_{H} & =E_{k_{i}}+E_{p_{i}}-E_{k_{f}} \\
E_{H} & =\frac{1}{2} m v_{1}^{2}+m g_{i}-\frac{1}{2} m v_{f}^{2} \\
& =\frac{1}{2}(5.0)(6.0)^{2}+(5.0)(9.8)(1.5)-\frac{1}{2}(5.0)(7.5)^{2}=22.9 \mathrm{~J}
\end{array}
$$

b. Determine the force of friction.

$$
\begin{aligned}
\Delta E_{H}=F_{f} d \quad F_{f}=\frac{\Delta E_{H}}{d} & =\frac{22.9 \mathrm{~J}}{3.5 \mathrm{~s}} \\
& =6.5 \mathrm{~N}
\end{aligned}
$$

