Equilibrium Notes

1-Translational Equilibrium

Ex.

Ok that was easy, now that same 20.0 kg object is lifted at a velocity of $4.9 \mathrm{~m} / \mathrm{s}$. What is the net force acting on it?

Because in both case the net force on the objects is zero they are said to be in \qquad . If the object is stationary it is said to be in \qquad , while an object moving at a constant velocity is in \qquad .

These are both case where the object is in \qquad .

Translational motion refers to motion along a line, therefore:

The condition of equilibrium:
\qquad
And so,
\qquad $=$ \qquad
\qquad $=$ \qquad

Ex.

A 64 N object is suspended using ropes as shown in the diagram. Calculate tensions T_{1} and T_{2} in the ropes.

Strategy 1: Components

1. Choose a point in the system that is in equilibrium, with all forces acting on it. In this case use \qquad .
2. Draw an \qquad !
3. Break these forces...
4. Use...

Strategy 2: Create a closed vector diagram

1. Since we know that $\mathrm{F}_{\text {net }}=0$ at any point in equilibrium, what would happen if we added if we add up all of the force vectors?
2. Use Sine Law, Cosine Law, or whatever means necessary to solve the triangle...
3. NEVER assume that it is a \qquad unless you can prove it geometrically.

Ex.
An object is suspended as shown. If the tension in one of the ropes is 50 N as shown, what is the weight of the object?

You can use Strategy 1 or Strategy 2, just be sure you know both ways. You're bound to hit a brick wall eventually and it's nice to be able to try it from a different angle, no pun intended...

Equilibrium Notes

2 - Torque at 90°
A body in translational equilibrium will have no acceleration in the x or y directions. However it still could be
\qquad —.

Consider a teeter-totter, with a 100 kg student on one end and a 50 kg student on the other.
What are the net translational forces in:
The x-direction? \qquad
The y-direction? \qquad

Although the net translational forces are zero, the system has a \qquad - so it is not in equilibrium.

An object in equilibrium must have both translational and \qquad equilibrium.

The second condition of equilibrium is that in order to have no rotation, there must be no net torque.

Torque is defined as: force \mathbf{x} distance to pivot

Unit of torque: \qquad
Torque is a \qquad quantity, which must work in either the clockwise (c) or counterclockwise (cc) directions.

If an object is in rotational equilibrium then:

Uniform Beam:

Arbitrary Position of Rotation:

Extension:

What are the vertical and horizontal components of the supporting force provided by the hinge in the last question?

Ex:

Two students sit on opposite sides of an 800 N teeter-totter. Student 1 has a mass of 65 kg and sits at the very end of the teeter-totter. Student 2 has a mass of 90 kg . How far from the pivot should he sit in order to achieve equilibrium?

Ex:
A 3500 kg truck is parked on a bridge as shown. If the bridge deck itself has a mass of 6500 kg find the supporting force provided by each of the two support posts.

Equilibrium Notes

3 - Torque Not at 90°

Although we've already learned about torque, we don't quite have the whole story. So far we have only seen torque provided by forces acting perpendicular to the body in equilibrium. What happens if a force acts in a direction other than perpendicular to the body?

Ex

A 2.2 m long 50.0 N uniform beam is attached to a wall by means of a hinge. Attached to the other end of the beam is a 100 N weight. A rope also helps support the beam as shown.
a) What is the tension in the rope?
b) What are the vertical and horizontal components of the supporting force provided by the hinge?

First we draw the beam with the forces acting on it and their distances from the pivot:

So, whenever we are calculating the torque on a body we must ALWAYS use the \qquad
\qquad of the force.

Ok now go solving!
a)
b)

RULE NOT TO BREAK LEST YE BE BROKEN:

When we find the torque acting on a body we MUST ALWAYS use the component of the force that is
to

Ex

A 1.8 m long 12.0 kg bar is attached to a wall by a hinge and supported by a rope as shown. Find the tension in the rope.

Ex
Find the mass of the object given the information in the diagram and that the weight of the uniform beam is 115 N.

