Equilibrium Notes 1 – Translational Equilibrium

Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it?	Ex. Ok that was easy, now that same 20.0 kg object is lifted at a velocity of 4.9 m/s. What is the net force acting on it?
object is stationary it is said to be in velocity is in	tero they are said to be in If the, while an object moving at a constant .
Translational motion refers to motion along a line, therefore: The condition of equilibrium:	A 64 N object is suspended using ropes as shown in the diagram. Calculate tensions T_1 and T_2 in the ropes.
=And so,	35° 50° T_{1} T_{2}
=	
Strategy 1: Components1. Choose a point in the system that is in equilibrium	n, with all forces acting on it. In this case use
2. Draw an!	
3. Break these forces	
4. Use	

 Strategy 2: Create a closed vector diagram 1. Since we know that F_{net} = 0 at any point in equilibrium, what would happen if we added if we add up all of the force vectors?
 Use Sine Law, Cosine Law, or whatever means necessary to solve the triangle NEVER assume that it is a unless you can prove it geometrically.

Ex.

An object is suspended as shown. If the tension in one of the ropes is 50 N as shown, what is the weight of the object?

You can use **Strategy 1** or **Strategy 2**, just be sure you know both ways. You're bound to hit a brick wall eventually and it's nice to be able to try it from a different angle, no pun intended...

Equilibrium Notes $2 - \text{Torque at } 90^{\circ}$

—	
A body in translational equilibrium will have no acc	celeration in the x or y directions. However it still could be
Consider a teeter-totter, with a 100 kg student on or	ne end and a 50 kg student on the other.
What are the net translational forces in: The x-direction?	
The x-direction? The y-direction?	
Although the net translational forces are zero, the sy it is not in equilibrium.	ystem has a so
An object in equilibrium must have both translation	al and equilibrium.
The second condition of equilibrium is that in order to have no rotation, there must be no net torque. Torque is defined as: force x distance to pivot	Imagine trying to loosen the lug nuts to remove a tire from your car. The longer the wrench you use, the easier it will be. <u>Ex:</u> A torque of 24.0 Nm is needed to tighten a nut. If a person can apply a force of 100 N, what is the minimum length of wrench that is required?
Unit of torque:	
Torque is a quantity, which must work in either the clockwise (c) or counterclockwise (cc) directions.	A few more terms we need to learn before we go on Centre of Gravity:
If an object is in rotational equilibrium then:	Uniform Beam:
	Arbitrary Position of Rotation:
$\underline{Ex:}$	2.0 m
A 350 N store sign hangs from a pole of negligible wall by a hinge and supported by a vertical rope.	1
	<u>− 1.3 m</u> →
	Jen + Eric Store

_ _ _ _ _ _ _ _

Extension:
What are the vertical and horizontal components of the supporting force provided by the hinge in the last question?
Two students sit on opposite sides of an 800 N teeter-totter. Student 1 has a mass of 65 kg and sits at the very end of the teeter-totter. Student 2 has a mass of 90 kg. How far from the pivot should he sit in order to achieve

Ex:

A 3500 kg truck is parked on a bridge as shown. If the bridge deck itself has a mass of 6500 kg find the supporting force provided by each of the two support posts.

$\frac{Equilibrium Notes}{3 - Torque Not at 90^{\circ}}$

of the force.

Ok now go solving! a)

RULE NOT TO BREAK LEST YE BE BROKEN:

When we find the torque acting on a body we MUST ALWAYS use the component of the force that is ______ to _____ !!!

<u>Ex</u>

A 1.8 m long 12.0 kg bar is attached to a wall by a hinge and supported by a rope as shown. Find the tension in the rope.

<u>Ex</u>

Find the mass of the object given the information in the diagram and that the weight of the uniform beam is 115 N.

