Foundations of Math 12
Chapter 3: Set Theory and Logic
Vocabulary and Symbols

hey

3.1 Types of Sets and Set Notation

Foundations of Math 12

Term	Definition	Example
Disjoint	Two or more sets having no \qquad elements in \qquad common .	The set of even numbers and the set of \qquad odd numbers are disjoint.
Finite set	A set with a countable \qquad number of elements	The set of even numbers less than 10 $E=\{2,4,6,8\}$
Infinite set	A set with an \qquad infinite number of elements.	The set of natural numbers, $N=\{1,2,3, \ldots\}$
$n(X)$	The number \qquad of elements of the set X.	If the set X is defined as the set of numbers from 1 to 5 , $\begin{aligned} & X=\{1,2,3,4,5\} \\ & n(X)=5 \end{aligned}$
Mutually Exclusive	Two or more events that cannot \qquad at the same time.	The sun rising + the sun setting are mutually exclusive

3.3 Intersection and Union of Two Sets

Term	Definition	Example
Intersection	The set of elements that are \qquad to two or more sets. In set notation, the intersection of sets A and B is: \qquad	If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cap B=\{3\}$
Union	The set of all \qquad the elements in two or more sets. In set notation, the union of sets and B is: \qquad $A \cup B$	If $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cup B=\{1,2,3,4,5\}$
$A \backslash B$	Elements inset A but not in set B	$\begin{gathered} A \backslash B=\{1,2\} \\ A=35_{B} \end{gathered}$

Foundations of Math 12
3.5 Conditional Statements and Their Converse

Foundations of Math 12
3.6 The Inverse and the Contrapositive of Conditional Statements

Goal: Understand sets and set notation.

1. set: A collection of distinguishable objects; for example, the set of whole numbers is $W=\{0,1,2,3, \ldots\}$.
2. element: An object in a set; for example, 3 is an element of D, the set of digits.
3. universal set: A set of all the elements under consideration for a particular context (also called the sample space); for example, the universal set of digits is $D=\{0,1,2,3,4,5,6,7,8,9\}$.
4. subset: A set whose elements all belong to another set; for example, the set of odd digits, $O=\{1,3,5,7,9\}$, is a subset of D, the set of digits. In set notation, this relationship is written as: $O \subset D$.
5. complement: All the elements of a universal set that do not belong to a subset of it; for example, $O^{\prime}=\{0,2,4,6,8\}$ is the complement of $O=\{1,3,5,7,9\}$, a subset of the universal set of digits, D. The complement is denoted with a prime sign, O^{\prime}.
6. empty set: A set with no elements; for example, the set of odd numbers divisible by 2 is the empty set. The empty set is denoted by \{\} or \emptyset.
7. disjoint: Two or more sets having no elements in common; for example, the set of even numbers and the set of odd numbers are disjoint.
8. finite set: A set with a countable number of elements; for example, the set of even numbers less than $10, E=\{2,4,6,8\}$, is finite.
9. infinite set: A set with an infinite number of elements; for example, the set of natural numbers, $N=\{1,2,3, \ldots\}$, is infinite.
10. mutually exclusive: Two or more events that cannot occur at the same time; for example, the Sun rising and the Sun setting are mutually exclusive events.

INVESTIGATE the Math

Jasmine is studying the provinces and territories of Canada. She has decided to categorize the provinces and territories using sets .

How can Jasmine use sets to categorize Canada's regions?
A. List the elements of the universal set of Canadian provinces and territories, C.

$$
C=\{Y T, N T, N U, B C, A B, S K, M B, O N, Q C, N B, N S, P E, N L\}
$$

B. One subset of C is the set of Western provinces and territories, W. Write W in set notation.

$$
N=\{Y T, N T, N U, B C, A B, S K, M B\}
$$

C. The Venn diagram above represents the universal set, C. The circle in the Venn diagram represents the subset W. The complement of W is the set W^{\prime}.
i. Describe what W^{\prime} contains.
W^{\prime} contains all those provinces and territories that aren't W
ii. Write W^{\prime} in set notation.

$$
W^{\prime}=\{O N, Q C, N B, N S, P E, N L\}
$$

iii. Explain what W^{\prime} represents in the Venn diagram.
anything outside of the W circle but inside the C square
D. Jasmine wrote the set of Eastern provinces as follows: $E=\{\mathrm{NL}, \mathrm{PE}, \mathrm{NS}, \mathrm{NB}, \mathrm{QC}, \mathrm{ON}\}$ is E equal to V? Explain.
W^{\prime} ? Yes, same elements are in both subsets
E. List T, the set of territories in Canada. Is T a subset of C ? Is it a subset of W, or a subset of W^{\prime} ? Explain using your Venn diagram.

$$
T=\{y T, N T, N u\}
$$

T is a subset W and C

$$
\begin{aligned}
& T \subset W \\
& T \subset C
\end{aligned}
$$

F. Explain why you can represent the set of Canadian provinces south of Mexico by the empty set.

There are no provinces south of MX
G. Consider sets C, W, W^{\prime}, and T. List a pair of disjoint sets. Is there more than one pair of disjoint sets?
W^{\prime} and T are disjoint
W and W^{\prime} are disjoint
H. Complete your Venn diagram by listing the elements of each subset in the appropriate circle.

p. 147

```
Communication Notation
The folowing s a summary of notation introduced so far
Sess are defined using trackets. For exmple, to define the univeral see of
the nurbes 1, 2, and 3, list is clement:
U-{1,2,3)
To defre the set, A that has the sumben }1\mathrm{ and 2 as 
A - {1, 2}
Al elemens of A are abo elements of }U,s0,A\mathrm{ ba vilset of }
ACU
The se: A', the complement of A, con be defired ar:
A}={3
Te defre fre set 8, a sibuet of U thut contaiss the number 4:
|={} or 暗溇
BCO
```


Example 1: Sorting numbers using set notation and a Venn diagram (p.148)
a) Indicate the multiples of 5 and 10 , from 1 to 500 , using set notation. List any subsets.
b) Represent the sets and subsets in a Venn diagram.
a) Start with a universal set, ie what types of numbers are multiples of 5 and 10 ?

$$
\begin{aligned}
& S=\{1,2,3, \ldots, 498,499,500\} \\
& S=\{x \mid 1 \leqslant x \leqslant 500, x \in N\}
\end{aligned}
$$

x such that inequality what kane of numbers

$$
\begin{aligned}
& F=\{5,10,15,20, \ldots, 490,495,500\} \\
& F=\{f \mid f=5 x, 1 \leqslant x \leqslant 100, x \in N\} \\
& T=\{10,20,30, \ldots, 480,490,500\} \\
& T=\{t \mid t=10 x, 1 \leqslant x \leqslant 50, x \in N\}
\end{aligned}
$$

$T \subset F \subset S$

$$
F^{\prime}=\text { non-multiples of } 5
$$

b)

Example 2: Determining the number of elements in sets (p. 149)
A triangular number, such as $1,3,6$, or 10, can be represented as a triangular array.

a) Determine a pattern you can use to determine any triangular number.
b) Determine how many natural numbers from 1 to 100 are
i) even and triangular,
ii) odd and triangular, and
iii) not triangular.
c) How many numbers are triangular?
a) 1

$$
\left.\begin{array}{l}
1 \\
3 \rightarrow 1+2 \\
6 \rightarrow 1+2+3 \\
10 \rightarrow 1+2+3+4 \\
15 \rightarrow 1+2+3+4+5
\end{array}\right\}
$$

the $n^{\text {th }}$ triangular number is the sum of the first nth natural numbers
$U=\{$ natural numbers from $1-100\}$
$T=\{$ triangular numbers from 1-100\}

$$
\frac{91}{105}
$$

$$
\begin{array}{ll}
\text { bi. } & E=\{6,10,28,36,66,78\} \\
& n(E)=6 \\
& n(T)=13
\end{array}
$$

$$
\begin{aligned}
n(U) & =100 \\
n(T) & =13 \\
n\left(T^{\prime}\right) & =n(U)-n(T) \\
& =100-13 \\
& =87
\end{aligned}
$$

b. iii $n\left(T^{\prime}\right)$

$$
\text { b. ii } n(T)-n(E)=n(0)
$$

$$
13-6=7
$$

$$
\begin{gathered}
0=\{1,3,15,21,45,55 \\
91\}
\end{gathered}
$$

C. There are an infinite number of natural numbers \therefore the must be an infinite nurrter of triangular numbers

$$
\begin{aligned}
& T=\{1,3,6,10,15,21,28,36, \\
& 45,55,66,78,91\}
\end{aligned}
$$

Example 3: Describing the relationships between sets (p. 151)
Alden and Connie rescue homeless animals and advertise in the local newspaper to find homes for the animals. They are setting up a web page to help them advertise the animals that are available. They currently have dogs, cats, rabbits, ferrets, parrots, lovebirds, macaws, iguanas, and snakes.
a) Design a way to organize the animals on the web page. Represent your organization using a Venn diagram.
b) Name any disjoint sets.
c) Show which sets are subsets of one another using set notation.
d) Alden said that the set of fur-bearing animals could form one subset. Name another set of animals that is equal to this subset.
a) universal set: $A=\{$ all the animals available $\}$

$$
W=\{\text { warm-blooded animals }\}
$$

$C=$ \{cold-blooled animals $\}$

$$
\begin{aligned}
& W=\{\text { dogs, cats, rabbits, ferrets, parrots, lovebirds, } \\
& \text { mucaws }\} \\
& C=\left\{\begin{array}{l}
\text { iguanas, snakes }\}
\end{array}\right.
\end{aligned}
$$

$$
M=\{\text { dogs, cats, rabbits, ferrets }\}
$$

$$
B=\{\text { parrots, lovebirds, macaws }\}
$$

c) $M \subset W$

$$
\left.\begin{array}{lll}
W \text { and } C \\
C & \text { and } & M \\
C \text { and } & B \\
M \text { and } & B
\end{array}\right\} \text { disjoint }
$$

d) $F=\{$ dogs, cats, rabbits, ferrets $\}$

$$
M=F
$$

Example 4: Solving a problem using a Venn diagram (p.152)
Bilyana recorded the possible sums that can occur when you roll two four-sided dice in an outcome table:
a) Display the following sets in one Venn diagram: • rolls that produce a sum less than $5 \cdot$ rolls that produce a sum greater than 5

	1	2	3	4
1	2	3	4	3
2	3	4	5	6
3	4		6	7
4		6	7	8

b) Record the number of elements in each set.
c) Determine a formula for the number of ways that a sum less that or greater than 5 can occur. Verify your formula.

$$
\begin{aligned}
& n(s)=16 \\
& n(L \text { or } G)=n(L)+n(t) \\
& n(2)=6 \\
& n(G)=6 \\
& S=\{\text { all possible sums }\} \\
& L=\{\text { all sums }<5\} \\
& G=\{\text { all sums }>5\}
\end{aligned}
$$

In Summary
Key Ideas

- You can represent a set of elements by:
- listing the elements; for example, $\mathrm{A}=\{1,2,3,4,5\}$
- using words or a sentence; for example,
$A=\{$ all integers greater than 0 and less than 6$\}$
- using set notation; for example, $A=\{x \mid 0<x<6, x \in\}$
- You can show how sets and their subsets are related using Venn diagrams. Venn diagrams do not usually show the relative sizes of the sets.
- You can often separate a universal set into subsets, in more than one correct way.
Need to Know
- Sets are equal if they contain exactly the same elements, even if the elements are listed in different orders.
- You may not be able to count all the elements in a very large or infinite set, such as the set of real numbers.
- The sum of the number of elements in a set and its complement is equal to the number of elements in the universal set:
$n(A)+n\left(A^{\prime}\right)=n(U)$
- When two sets A and B are disjoint,

$$
n(A \text { or } B)=n(A)+n(B)
$$

HW: 3.1 p. 154-158 \#4, 6, 8, 9, 11, 12, 14, 15, 16 \& 19

F Math 12
3.2 Exploring Relationships between Sets p. 159

Name
Date \qquad

Goal: Explore what the different regions of a Venn diagram represent.
EXPLORE the Math
In an Alberta school, there are 65 Grade 12 students. Of these students, 23 play volleyball and 26 play basketball. There are 31 students who do not play either sport. The following Venn diagram represents the sets of students.
V and B

How many students play: Volleyball only? \qquad 8 Both Volleyball and Basketball? \qquad 15

Basketball only? \qquad $\|$

Neither sport? \qquad 31 $49-34=15$

Reflect: Consider the set of students who play volleyball and the set of students who play basketball. Are these two sets disjoint? Explain how you know.

No, because then is overlap in the set of the Venn diagram

Example 2: Each member of a sports club plays at least one of soccer, rugby, or tennis. The following information is known. 43 members play tennis, 11 play tennis and rugby, 7 play tennis and soccer, 6 play soccer and rugby, 84 play rugby or tennis, 68 play soccer or rugby, and 4 play all three sports.
a) Display the information in a Venn diagram.

$$
\begin{aligned}
& 11-4=7 \\
& 7-4=3 \\
& 6-4=2 \\
& 43-3-4-7=29 \\
& 68-39-7-4-3-2=13
\end{aligned}
$$

b) How many members does the club have?

$$
29+7+4+3+2+39+13=97 \text { members }
$$

Example 3: In a high school, there are 130 grade 11 students. Currently, 82 students are taking math, 27 are taking math and physics, 25 are taking math and chemistry, 20 are taking chemistry and physics, 110 are taking math or chemistry, and 87 are taking chemistry or physics. Eleven students are taking all three courses.
a) Draw a Venn diagram to display the information.

$$
\begin{aligned}
& 27-11=16 \\
& 25-11=14 \\
& 20-11=9 \\
& 82-16-11-14=41 \\
& 110-41-16-11-14-9=19 \\
& 87-19-14-11-9-16=18
\end{aligned}
$$

b) How many students are taking math or physics?

$$
41+14+11+16+18+9=109
$$

c) How many students are taking none of these three courses?

$$
130-41-16-11-14-19-9-18=2
$$

Example 4: Each student at a music camp plays at least one of the following instruments: violin, piano, or saxophone. It is known that 6 students play all three instruments, 163 play piano, 36 play piano and violin, 13 play piano and saxophone, 11 play saxophone and violin, 208 play violin or piano, and 98 play saxophone or violin.
a) Draw a Venn diagram to display the information.

$$
\begin{aligned}
& 36-6=30 \\
& 13-6=7 \\
& 11-6=5 \\
& 163-30-6-7=120 \\
& 208-30-6-7-120-5=40 \\
& 98-40-30-6-5-7=10
\end{aligned}
$$

b) How many students are there at the camp?

$$
40+30+120+5+6+7+10=218
$$

HW: 3.2 p. 160-161 \#1-5
\qquad
\qquad

Goal: Understand and represent the intersection and union of two sets.

1. intersection: The set of elements that are common to two or more sets. In set notation, $A \cap B$ denotes the intersection of sets A and B; for example, if $A=\{1,2,3\}$ and $B=\{3$,
$4,5\}$, then $A \cap B=\{3\}$.
2. union: The set of all the elements in two or more sets; in set notation, $A \cup B$ denotes the union of sets A and B; for example, if $A=\{1,2,3\}$ and $B=\{3,4,5\}$, then $A \cup B=\{1$, $2,3,4,5\}$.
3. Principle of Inclusion and Exclusion: The number of elements in the union of two sets is equal to the sum of the number of elements in each set, less the number of elements in both sets; using set notation, this is written as $n(A \cup B)=n(A)+n(B)-n(A \cap B)$.

Venn Diagrams \& Notation
Shade the region that contains the elements that belong.

A^{\prime}
not $A^{\prime} A$

B^{\prime}
not B

$A \cup B$
of B

A and b
(A and B)
A not 3

Example 1: Determining the union and intersection of disjoint sets (p.164)
If you draw a card at random from a standard deck of cards, you will draw a card from one of four suits: clubs (C), spades (S), hearts (H), ordiamonds (D).
a) Describe sets C, S, H, and D, and the universal set U for this situation.
b) Determine $n(C), n(S), n(H), n(D)$, and $n(U)$.

$$
\begin{array}{ll}
U=\{\text { drawing acardfrom adeck of } 52 \text { cards }\} & n(U)=52 \\
S=\{\text { drawing a spade\} } & n(S)=13 \\
H=\{\text { drawing a heart\} ~ } & n(H)=13 \\
C=\left\{\begin{array}{ll}
\text { drawing a club\} } & n(C)=13 \\
D=\{\text { drawing a diamond\} ~ } & n(D)=13
\end{array}\right\} .52
\end{array}
$$

c) Describe the union of S and H. Determine $n(S \cup H)$. $\rightarrow O R$

SUH $=$ \{the set of 13 spades and 13 hearts $\}$

$$
n(S \cup H)=26 \rightarrow n(S)+n(H)=n(S U H)
$$

d) Describe the intersection of S and H. Determine $n(S \cap H)$.

$$
\begin{aligned}
& S \cap H=\{ \} \\
& n(S \cap H)=0
\end{aligned}
$$

e) Determine whether the events that are described by sets S and H are mutually exclusive, and whether sets S and H are disjoint.

A card cannot be both a spade and a heart
\therefore the events are mutually exdusive and disjoint (no overlap)
f) Describe the complement of $S \cup H$.
$(S U H)^{\prime}=\{$ the set of cards that are not hearts or spades\}

$$
(S \cup H)^{\prime}=(C \cup D)
$$

Example 2: Determining the number of elements in a set using a formula (p. 166)
The athletics department at a large high school offers 16 different sports:

Determine the number of sports that require the following types of equipment:
a) a ball and an implement, such as a stick, a club, or a racquet (draw Van Diagram)

Example 3: Determining the number of elements in a set by reasoning (p. 168)
Jamaal surveyed 34 people at his gym. He learned that 16 people do weight training three times a week, 21 people do cardio training three times a week, and 6 people train fewer than three times a week. How can Jamaal interpret his results?

$G=$ \{all the peeps that go to the gym that were surveyed?

$$
28=16+21-x
$$

$$
\begin{aligned}
W & =\{\text { weights } 3 / \text { week }\} \\
C & =\{\text { cardio } 3 / \text { week }\} \\
34-6 & =28 \\
n(w \cup C) & =28 \\
n(w \cap c) & =?
\end{aligned}
$$

$$
28=37-x
$$

$$
28=37-9
$$

In Summary

Key Ideas

- The union of two or more sets, for example, $\boldsymbol{A} \cup \boldsymbol{B}$, consists of all the elements that are in at least one of the sets. It is represented by the entire region of these sets on a Venn diagram. It is indicated by the word "or."

- The intersection of two or more sets, for example, $A \cap B$, consists of all the elements that are common to these sets. It is represented by the region of overlap on a Venn diagram. It is indicated by the word "and."

Need to Know

- If two sets, A and B, contain common elements, the number of elements in A or $B, n(A \cup B)$, is:

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

This is called the Principle of Inclusion and Exclusion. To calculate $n(A \cup B)$, subtract the elements in the intersection so they are not counted twice, once in $n(A)$ and once in $n(B)$.

- If two sets, A and B, are disjoint, they contain no common elements:

$$
\begin{aligned}
& n(A \cap B)=0 \text { and } \\
& n(A \cup B)=n(A)+n(B)
\end{aligned}
$$

- Elements that are in set A but not in set B are expressed as $A \backslash B$. The number of elements in A or $B, n(A \cup B)$, can also be determined as follows:

$$
n(A \cup B)=n(A \backslash B)+n(B \backslash A)+n(A \cap B)
$$

HW: 3.3 p. 171-175 \#5, 6, 7, 9, 10, 11, 12, 16, 17 \& 18
\qquad

Goal: Use sets to model and solve problems.
Example 1: Solving a puzzle using the Principle of Exclusion and Inclusion (p.180)
Use the following clues to answer the questions below:

- 28 children have a dog, a cat, or a bird. n (BUCUD)
- 13 children have a dog.
- 13 children have a cat.
- 13 children have a bird.
- 4 children have only a dog and a cat.
- 3 children have only a dog and a bird.
- 2 children have only a cat and a bird.
- No child has two of each type of pet.
a) How many children have a cat, a dog, and a bird?
Define the sets and draw a Venn diagram.

$$
\text { Let } x \text { represent the number of children }
$$

$$
\begin{aligned}
& \text { with a bird, a cat, and a dog: } \\
& P=\{\text { children with pets }
\end{aligned}
$$

$$
\begin{aligned}
& =\text { cochidriden with } \frac{c a t}{\text { cat }},
\end{aligned}
$$

$$
\begin{aligned}
& C=\{\text { crnlaren with a } \\
& B=\{\text { children with a bird }\}
\end{aligned}
$$

$$
D=\left\{\begin{array}{cc}
\log i l d r e n ~ w i t h ~ a ~ \\
\operatorname{dog}
\end{array}\right.
$$

$$
\begin{aligned}
n(B \cup C \cup D) & =n(B)+n(C)+n(D)-n(B \cap C)-n(C \cap B)-n(D \cap B)+n(B \cap C \cap D) \\
28 & =13+13+13-(2+x)-(4+x)-(3+x)+x
\end{aligned}
$$

$$
\begin{aligned}
28 & =39-2-x-4-x-3-x+y \\
28 & =30-2 x
\end{aligned} \rightarrow \begin{aligned}
\frac{-2}{-2} & =\frac{-2 x}{-2} \\
1 & =x
\end{aligned}
$$

b) How many children have only one pet?

$$
7+6+5=18
$$

Example 3: Shannon's high school starts a campaign to encourage students to use "green" transportation for travelling to and from school. At the end of the first semester, Shannon's class surveys the 750 students in the school to see if the campaign is working. They obtain these results:

- 370 students use public transit. $n(T)$
- 100 students cycle and use public transit. $n(C \cap T)$
- 80 students walk and use public transit. $n(W \cap T)$
- 35 students walk and cycle. $\cap(W \cap C)$

Complete the Venn Diagram to show how many students are using green transportation for travelling to and from school.
$U=\{$ students who attend Shannon's school $\}$
$T=$ \{students who use public transit $\}$
$W=\{$ students who walk
$\mathrm{C}=$ \{students who cycle\}

$$
\begin{aligned}
& n(W \cap T)=80 \\
& n(W \cap T \backslash C)=80-20 \\
&=60 \\
& n(C \cap T)=100 \\
& n(C \cap T \backslash W)=100-20 \\
&=80 \\
& n(W \cup T \cup C)= 210+80+20+60+ \\
& 30+15+60 \\
&=475
\end{aligned}
$$

- 20 students walk, cycle, and use public transit. $\quad \cap(W \cap C \cap T)$
- 445 students cycle or use public transit. $\cap(C \cup T)$
- 265 students walk or cycle. $n(W \cup C)$

$n(w \cap c)=35$
$\begin{aligned} n(\omega \cap c \backslash \tau) & =35-20 \\ & =15\end{aligned}$
$n(T)=370$
$n($ Tonly $)=370-60-20-80$
$=210$
$n(C \cup T)=455$

$$
n(\text { c only })=445-210-80-20-60-15
$$

$$
=60
$$

$$
n(c \cup w)=265
$$

$$
\begin{aligned}
n(C \cup W) & =265 \\
n(\text { W only }) & =265-80-20-60-60-15 \\
& =30
\end{aligned}
$$

$$
=30
$$

In Summary

Key Ideas

- Set theory is usefu for solving many trpes of probiems, inclusing internel
searches, database queries, data analyses, gamer, and puzzes.
- To represent three intersecing sets with a Venn dagam, use three intersecting cincles. For example, in the folowing Venn dagram

- An $B \cap C$ is represented by region h.
$A \cap B$ is represented by the union of regions e and h
An Cis represented by the urion of regiors g and h, and
- $8 \cap$ C is represented by the union of regions h andi.

Each region of a Vern diagram contains elements that occur only in
that particular region

- You can use the Arinciple of Inclusion and Exclusion to devermin
the number of elements in the union of three sets
$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(A \cap C)-n(B \cap C)+n(A \cap B \cap C)$
Need to Know
* You can use concepts related to sets to search for websites on the internet:
- Put an exact phrase in quotation marks.
- Connect words or phrases with "and" to search for sises that contain both.

The word "and" represents the insersection of two or more sets.

- Connect words or phrases with "or" to search for sites that contain either

Connect words or phrases with "or" so search for sites that contan ent
one or the other, or both. The word "or" represents the union of two
one or the oth

- When solving a puczle or problem, it is often uselui to visulize the problem Fist idensty which sets are defined by the consex. Then identify how the sets owerlap. Finally, idently regions of the overlaps that are of interest in the ses ovelap. Finally, denthy regions of the overaps that are of interest in the puzie region and use the information about the region that is mest known cocheguce information about regions that are less well inown. A spstematic acproash will result in anowers that are easier to verth. approach will result in arswers that are easier to velly.

HW: 3.4 p. 191-194 \# $2,4,6,7,9,11,12 \& 13$

Goal: Understand and interpret conditional statements.

1. conditional statement: An "if-then" statement; for example, "If it is Monday, then it is a school day."
2. hypothesis: An assumption; for example, in the statement "If it is Monday, then it is a school day," the hypothesis is "It is Monday."
3. conclusion: The result of a hypothesis; for example, in the statement "if it is Monday, then it is a school day," the conclusion is "it is a school day."
4. counterexample: An example that disproves a statement; for example, "If it is Monday, then it is a school day" is disproved by the counterexample that there is no school on Thanksgiving Monday. Only one counterexample is needed to disprove a statement.
5. converse: A conditional statement in which the hypothesis and the conclusion are switched; for example, the converse of "If it is Monday, then it is a school day" is "If it is a school day, then it is Monday."
6. biconditional: A conditional statement whose converse is also true; in logic notation, a biconditional statement is written as " p if and only if q." For example, the statement "If a number is even, then it is divisible by 2 " is true. The converse, "If a number is divisible by 2 , then it is even," is also true. The biconditional statement is "A number is even if and only if it is divisible by 2."

Communication Notation
$p \Rightarrow q$ is notation for "If p, then q." $p \Rightarrow q$ is read as "p implies q."

Communication Notation
$p \Leftrightarrow q$ is notation for " p if and only if q."
This means that both the conditional statement and its converse are true statements.

LEARN ABOUT the Math

James and Gregory like to play soccer, regardless of the weather. Their coach made this conditional statement about today's practice: "If it is raining outside, then we practise indoors."

When will the coach's conditional statement be true, and when will it be false?
Example 1: Verifying a conditional statement ($p .195$)
Verify when the coach's conditional statement is true or false.
Hypothesis: it is raining out ide
conclusion: we practise indoors
Each of these statements is either true or false, so to verify this conditional statement, consider four cases.

Case 1: The hypothesis is true and the conclusion is true.
It rains ostaise and we practice indoors.
When the hypothesis and conclusion are both true, a conditional statement is true

Case 2: The hypothesis is false, and the conclusion is false.
It does not rain outside and se practice outdoors
When the thporthessis and concussion are both taste, a conditional statement is tr Le

Case 3: The hypothesis is false, and the conclusion is true.
It does not rall outside and we practice indoors
When the hypothesis is tasse and conclusion is tue, a conditional statement is true

Case 4: The hypothesis is true, and the conclusion is false.
\rightarrow H rains outside and we practice outdoors
When the hypothesis is true and conclusion is false, a conditional statement is false
This counter example shows that the conditional statement is false

Use a Truth Table to Summarize the Observations
Let p represent the hypothesis: It is raining outside. Let q represent the conclusion: We practise indoors.
$*\left\{\begin{array}{|l|l|l|}\hline p & q & p \Rightarrow q \\ \hline T & T & T \\ \hline F & F & T \\ \hline F & T & T \\ \hline T & F & F \\ \hline\end{array}\right.$
When the hypothesis is false, regardless of whether the conclusion is true or false, the
conditional statement is true
From the truth table, I can see that the only time a conditional statement will be false
is when the hypothesis is true and the conclusion is false.

Example 2: Writing conditional statements (p. 200)
"A person who cannot distinguish between certain colours is colour blind."
a) Write this sentence as a conditional statement in "if p, then q " form.

If a person cannot distinguish betwen certain colours then that person is colour blind.
b) Write the converse of your statement.

If a person is colour blind then that person cannot distinguish betwear certain colours.
c) Is your statement biconditional? Explain.

The first statement is true
The converse is \qquad

The statement can be written:
"A person is colour blind if and only if that person cannot distinguish
between certain colours."

Example 5: Verifying a biconditional statement (p. 200)
Reid stated the following biconditional statement: "A quadrilateral is a square if and only if all of its sides are equal." Is Reid's biconditional statement true? Explain.

Conditional Statement: If a quadrilateral is a square then all of its sides are equal \rightarrow true

Converse: If all the sides of a quadrilateral are equal then it is a square \rightarrow False
counterexample: A rhombus his 4 equal sides \therefore converse is fake

Since the converse is false the biconditional statement is false.

In Summary

Key Ideas

- A conditional statement consists of a hypothesis, p, and a conclusion, q

Different ways to write a conditional statement include the following:

- If p, then q.
- p implies q.
- $p \Rightarrow q$
- To write the converse of a conditional statement, switch the hypothesis and the conclusion

Need to Know

- A conditional statement is either true or false. A truth table for a conditional statement, $p \Rightarrow q$, can be set up as follows:

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p}=\boldsymbol{q}$
T	T	T
F	F	T
F	T	T
T	F	F

A conditional statement is false only when the hypothesis is true and the conclusion is false. Otherwise, the conditional statement is true, even if the hypothesis is false

* You can represent a conditional statement using a Venn diagram, with the inner oval representing the hypothesis and the outer oval representing the conclusion. The statement " p implies q " means that p is a subset of q
- Only one counterexample is needed to show that a conditional statement is false.
- If a conditional statement and its converse are both true, you can combine them to create a biconditional statement using the phrase "if and only if."

HW: 次多p. 203-206 \#1-8 \& 12 3.5

3.6 The Inverse and the Contrapositive

of Conditional Statements p. 208
Name \qquad
Date

Goal: Understand and interpret the contrapositive and inverse of a conditional statement.

1. inverse: A statement that is formed by negating both the hypothesis and the conclusion of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2, " the inverse is "If a number is not even, then it is not divisible by 2 ."
2. contrapositive: A statement that is formed by negating both the hypothesis and the conclusion of the converse of a conditional statement; for example, for the statement "If a number is even, then it is divisible by 2 ," the contrapositive is "If a number is not divisible by 2 , then it is not even."

\mathbf{p}	\mathbf{q}	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$
T	T	T
F	F	T
F	T	T
T	F	F

Communication Notation

In logic notation, the inverse of "if p, then q " is written as "If $\neg p$, then $\neg q$."

Communication Notation

In logic notation, the contrapositive of "if p, then q " is written as "If $\neg q$, then $\neg p$."

Example 1: Verifying the inverse and contrapositive of a conditional Statement (p. 209)
Consider the following conditional statement: "If today is February 29, then this year is a leap year."
a) Verify the statement, or disprove it with a counterexample.

Hypothesis (p) : Today is Feb. $29^{\text {th }}$ Conditional statement: if p, then q.
conclusion (q) : This year is a leap year

p	q	$p \Rightarrow q$
T	T	T

b) Verify the converse, or disprove it with a counterexample.
converse: If this year is a leap year, then today is Feb. 29 th
Hypothesis $)^{\circ}$ g This year is a leap year converse: if q, then p.
conclusion Top Today is Feb $29^{\text {th }}$
counter example: March $12^{\text {th }}, 2013$

c) Verify the inverse, or disprove it with a counterexample.

Hypothesis ($-p$): Today is not Feb. $2 a^{\text {th }}$ Inverse: if $\neg p$, then $7 q$
conclusion (Iq): This year is not a leap
your
Counter example: March 12 $2^{\text {th }}, 2013$

d) Verify the contrapositive, or disprove it with a counterexample.

Verity the contrapositive, or disprove it with a counterexample, then today is not Tob. $2 q^{\text {th }}$
Contrapositive: If this year is not a leap year,
Hypothesis $(\neg q)$: Thu year is not a leap year contrapositive: if 7 q then $I p$
conclusion $(\rightarrow p)$: To day is not Feb, 29 th

| $\neg q$ | $\neg p$ | T |
| :---: | :---: | :---: |$\quad \neg q \Rightarrow \neg p$

memorize!

Example 2: Examining the relationship between a conditional statement and its contrapositive (b. 210)

Consider the following conditional statement: "If a number is a multiple of 10 , then it is a multiple of $5 . "$
a) Write the contrapositive of this statement.

If a number is not a multiple of 5 , then it is not a multiple of 10
b) Verify that the conditional and contrapositive statements are both trues coitha a on
$I=\{n \in I\}=\{$ the set of integers $\}$ diagram
$F=\{5 n \in I\}=\{$ the at of multiples of five $\}$
$T=\{10 n \in I\}=\{$ the set of multiples of 10$\}$

TCF tells me the condition statement is TRUE
$T \not \subset F^{\prime}$ fell $s m e$ the contrapositive is TRUE

In Summary:

- You form the inverse of a conditional statement by \square
 the hypothesis and the conclusion.
- You form the converse of a conditional statement by \qquad exchanging the hypothesis and the conclusion.
- You form the contrapositive of a conditional statement by negating the hypothesis and the conclusion of it's converse
* It a conditional statement is true, then it's contrapositive is true, and vice
*.
 the statement is also true, and vice versa.

HW: 3.6 p. 214-216 \#1, 5, 6, 7, 9 \& 12

