\qquad
Date

Goal: Identify characteristics of the graphs of polynomial functions.

1. end behaviour: The description of the shape of the graph, from left to right, on the coordinate plane.
2. turning point:-Any point where the graph of a function changes from increasing to decreasing orfrom decreasing to increasing; for example, this curve has two turning points, since-the y-values change from decreasing to increasing to decreasing:

This curve does not have any turning points, since the y-values are always decreasing:

3. cubic functions: a polynomial function of the third degree, whose greatest exponent is three; for example, $f(x)=5 x^{3}+x^{2}-4 x+1$ \qquad
4. domain: the set of all possible values for the independent variable in a relation
5. range:the set of all possible values for the dependent variable as the independent variable takes on all possible values of the domain

INVESTIGATE the math
Graph each function below on the same set of axes using different colours and label the graphs:

2. a) $y=2 x+3$
b) $y=3 x-7$

1. a) $y=7$
b) $y=-2$
$\square y=7$

2. a) $y=-2 x-5$
b) $y=-x+6$
3. a) $y=x^{2}+0$
b) $y=-x^{2}-4$

\oplus slope $=$ line rises to the right
Θ slope $=$ line falls to the right

INVESTIGATE the math
Graph each function below on the same set of axes using different colours and label the graphs:

2. a) $y=2 x+3$
b) $y=3 x-7$

1. a) $y=7$
b) $y=-2$
$\square y=7$

2. a) $y=-2 x-5$
b) $y=-x+6$
3. a) $y=x^{2}+0$
b) $y=-x^{2}-4$

\oplus slope $=$ line rises to the right
Θ slope $=$ line falls to the right
4. $y=x^{3}+3 x^{2}+\bigcirc$

5. $y=x^{3}+2 x^{2}-5 x-6$

$$
y=x^{3}+2 x^{2}-5 x-6
$$

10. $y=-x^{3}-3 x^{2}+4$

11. $y=-x^{3}-x^{2}+6 x$

12. a) $y=0.5 x^{2}+4 x+8$
b) $y=-2 x^{2}+8 x-4$
13. a) $y=x^{2}+6 x+6$
b) $y=-x^{2}+6 x-5$

$$
y=x^{2}+6 x+6
$$

7. a) $y=x^{3}+\mathrm{O}$
b) $y=x^{3}+6 x^{2}+12 x+9$
8. a) $y=-x^{3}$ b) $y\left(-x^{3}\right) 6 x^{2}-12 x+8$

Polynomial Functions \rightarrow named according to their degree
\rightarrow normally written so that powers are in descending order e.g. $y=2 x^{3}-4 x^{2}+3 x-1$
$\rightarrow y$ can be replaced by $f(x)$

$$
\text { e.g. } f(x)=2 x^{3}-4 x^{2}+3 x-1
$$

Degree \rightarrow determined by the highest exponent within the polynomial function

Domain \rightarrow all possible x-values for the polynomial
\rightarrow all possible input values eg. $D=\{x \mid x \in \mathbb{R}\}$
Range \rightarrow all possible y-values for the polynomial all real \#s
\rightarrow all possible output values eg. $R=\{y \mid y \geqslant 1, y \in \mathbb{R}\}$ values of y

HW: 6.1 p. 383 \#1-4

Date

Goal: Determine the linear function that best fits a set of data, and use the function to solve a problem.

1. line of best fit: A straight line that best approximates the trend in a scatter plot.
2. regression function: A line or curve of best fit, developed through a statistical analysis of data.
3. interpolation: The process used to estimate a value within the domain of a set of data, based on a trend.
4. extrapolation: The process used to estimate a value outside the domain of a set of data, based on a trend.

Example 1: The table shows how the outside air pressure changes as an airplane rises after takeoff.
a. Create a scatter plot on the graphing calculator
b. Plot the points on a graph

X
Altitude (km) Air Pressure (kPa) $\mathbf{0}$ 101 $\mathbf{1}$ 80 $2 \boldsymbol{3} \boldsymbol{l}$ 74 $\mathbf{3}$ 62 $\mathbf{4}$ 55 $\mathbf{5}$ 46

c. What term best describes the trend?
liver
d. Write the linear regression equation of the data $y=a-x+b$

$$
y=-10.34 x+95.52
$$

e. What will the air pressure be at an altitude of 6 km ?

$$
33.5 \mathrm{kPa} \text { @ } 6 \mathrm{~km} \text { extrapolation }
$$

f. At what altitude would the airplane be if the pressure was 18.5 kPa ?

Example 2: The one-hour record is the farthest distance travelled by bicycle in 1 hour. The table below shows the world-record distances and the years after 1990.
(Use Window Settings: $X_{m i n}=-1, X_{m a x}=30, Y \min =-10, Y_{\max }=110$)

Years after $1990(\mathbf{y r})$	6	8	9	12	13	14	17	18	19
Distance (km)	78.04	79.14	81.16	82.60	83.72	84.22	86.77	87.12	90.60

a. Create a scatter plot on the graphing calculator
b. Plot the points on a graph

One -

c. Write the linear regression equation of the data.

$$
y=0.858 x+72.643
$$

d. Based on this data, what was the world-record distance in 2000?

$$
81.23 \mathrm{kM}
$$

e. Based on this data, when might the world-record distance be 95 km ?

$$
26 \text { years after } 1990 \rightarrow 2016
$$

WW: 6.3 pp.407-412 \#4, 5, 6, 7, 11 \& 13
\qquad
Date \qquad

Goal: Determine the quadratic or cubic function that best fits a set of data, and use the function to solve a problem.

1. curve of best fit: A curve that best approximates the trend on a scatter plot.

Example 1: Shannon is a police officer who investigates accidents. Shannon can estimate the speed of a car before a collision based on skid length.

Speed on Dry Pavement $(\mathbf{k m} / \mathrm{h})$	0	10	20	30	40	50	60	70	80	90	100
Skid Length (\mathbf{m})	0	0.6	2.3	5.3	9.1	14.0	20.4	27.6	35.9	45.5	56.3

a. Create a scatter plot on the graphing calculator
v. Plot the points on a graph
c. How can you describe the trend in the data?
Asspecd morease constantly
skid length increase more and more (exponentially)
d. What term best describes the trend?

e. Write the regression equation of the data.

$$
\begin{gathered}
y=0.0056 x^{2}+0.0022 x+0.0371 \\
y=a x^{2}+b x+c
\end{gathered}
$$

f. Based on these data, how long might a skid length be if a car had been travelling
i) $65 \mathrm{~km} / \mathrm{h}$?
ii) $84 \mathrm{~km} / \mathrm{h}$?
iii) $120 \mathrm{~km} / \mathrm{h}$?

23.8 m

inter pod cation
39.7 m

1 merepolation
80.9 m

Extrapolation
g. Based on these data, at what speed would a car have been travelling if there was a skid length measuring
i) 7.2 metres?
ii) 32.5 metres?
iii) 95 metres?
$35.6 \mathrm{kn} / \mathrm{h}$
$130.1 \mathrm{ku} / \mathrm{m}$

Example 2: The following data shows that average retail price of gasoline, per litre, for a selection of years in a 30-year period beginning in 1979.

a. Create a scatter plot on the graphing calculator (Use Window Settings: $X_{\text {min }}=-10, X_{\max }=40, X \mathrm{Xcl}=10$, $Y_{\text {min }}=-10, Y_{\text {max }}=130, Y_{s c l}=10, X_{\text {res }}=1$)
b. Plot the points on a graph Gasoline Retail Prices

Year after $\mathbf{1 9 7 9}$ (yr)	Price of Gas ($\mathbf{\text { G }}$)
0	21.98
1	26.18
2	35.63
3	43.26
4	45.92
7	45.78
8	47.95
9	47.53
12	57.05
14	54.18
17	58.52
20	59.43
22	70.56
23	70.00
24	74.48
25	82.32
26	92.82
27	97.86
28	102.27
29	115.29

c. What term best describes the trend?
cubic
d. Write the regression equation of the data.

$$
y=0.0123 x^{3}-0.465 x^{2}+6.295 x+23.454
$$

e. Based on these data, what would the average gas price have been (or will be) in
i) 1984 ? (5 years)
ii) 2000? (21 years)
iii) 2015 ? (36 years)

$$
44.85 \phi / L \quad 64.55 \phi / L
$$

$$
221.16 \mathrm{f} / \mathrm{L}
$$

f. Based on these data, when would the average gas price have been (or will be)

1987
i) $100 \mathrm{c} / \mathrm{L}$?
27.4 yeurs

2006
iii) $120 ~ ¢ / L ?$
29.5 years
2009

In Summary

Key Idea

- If the points on a scatter plot seem to follow a predictable curved pattern, then there may be a quadratic or cubic relationship between the independent variable and the dependent variable.

Need to Know

- If the points on a scatter plot follow a quadratic or cubic trend, then graphing technology can be used to determine and graph the equation of the curve of best fit.
- To solve an equation, you can graph the corresponding function of each side of the equation. The x-coordinate of the point of intersection is the solution to the equation.
- Technology uses polynomial regression to determine the curve of best fit. Polynomial regression results in an equation of a curve that balances the points on both sides of the curve.
- A curve of best fit can be used to predict values that are not recorded or plotted. Predictions can be made by reading values from the curve of best fit on a scatter plot or by using the equation of the curve of best fit

