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Work and Energy 
Work is done on an object that can exert a resisting force and is only accomplished 

if that object will move.  In particular, 

� we can describe work done by a specific object (where a force is applied) or 

on a specific object (where an opposing force must be overcome)   

� we can also specify whether work done is due to one particular force or to the 

total net force on the object. 

� work done is converted to other forms of energy. 

 

Essentially, the amount of work accomplished can be determined two ways: 

 

1) Work = force x distance,     or     W = Fd  � units: Joules (J) 

 

� Note that work is done only when a force acts parallel to the motion of an object, 

thereby affecting its motion. For any force that acts at an oblique angle to the 

direction of motion, only the parallel component of that force can be used to 

determine the work done.  

 

Force F 

 

 

        θθθθ    Force  

      F 

 

 

Distance d               F// 

                                                                                                                                   

 

 �Use component F// to find work:  W = F//d 

 

2) Work = a change in energy,    or W = ∆∆∆∆E �the work-energy theorem 

 

� this means that whenever one form of energy changes to another, work is done 

 

Either method may be utilized to calculate work done, depending on the 

information given in the problem. What follows are examples of the types of work 

that can be done on an object. 
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A: Work Done Against Gravity 

When an object is lifted upward, work is done on a mass against the resisting force of 

gravity. The energy used to do this is converted to gravitational potential energy, or Ep.  

In fact, Ep increases as the mass is lifted higher and higher.                

 

   m  � start with   W = FAppd   where FApp is the applied 

A mass is lifted          force. 

a distance ∆∆∆∆h    

against gravity.   � assuming the mass was lifted at a constant ‘v’, 

       

   m   then    FNet = 0     and       FApp = Fg 

      

� therefore, the work done against gravity is  W = Fgd = mg∆h 

 

� since the newly stored potential energy is  Ep = mgh,        � W = ∆∆∆∆Ep 

 

This tells us that work done against gravity = potential energy gained by the mass. 

 

Example #1. A 6.0 kg mass is raised from 1.5 m above the ground to 6.5 m high.                     

a) What work is done? 

b) What Ep does the mass now have? 

 

(see Work-Energy Ex 1 for answer) 

 

 

Note: gravitational potential energy is a relative measurement which depends on what 

elevation is chosen to be h = 0.  Usually the ‘0’ location is chosen as the lowest 

position that an object has the potential to fall.  

 

 

B: Work done against the force of Friction 

As long as an object moves along a horizontal surface with constant velocity, all 

the work is done against friction. If acceleration occurs, then work is being done 

against inertia as well (we will consider this later). 

 

Consider the following diagram of an object moved from position #1 to position #2 

at constant velocity. 
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As with the gravity example, start with   W = FAppd 

 

� at constant velocity, there is no acceleration, so     FNet = 0         

 

� this means that         FApp = Ff     �  W = Ffd 

 

The work done against friction is changed to heat energy and lost to the system.   

 

Example #2.   A 150 kg object is pulled at constant velocity over a horizontal 

surface (µµµµ = 0.12) for a distance of 7.0 m. How much heat energy was 

generated?    

 

(see Work-Energy Ex 2 for answer) 

 

 

C: Work done against inertia (also called net work done) 

When a force acts to accelerate an object over a distance, that object is no longer 

“doing what it’s already doing”. In other words, work is done against inertia. This 

work is stored as the energy of speed, called kinetic energy or Ek. 

 

Consider the case of a ball upon which some unbalanced force acts. The ball is 

accelerated from vi=0 to some final speed vf over a distance d. 

 
 

Note that kinetic energy changes as the speed of the object changes.  The work done 

against inertia to accelerate the mass a distance d can be determined two ways:  

 

1) W = FNetd         2)  W = ∆∆∆∆Ek    
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To prove these two methods to find net work are the same: 

 

� start with    FNet = ma    � therefore W = mad 

 

� from kinematics, we also know that a = 
v
f
- v

i

t
   and   d = (

v
f
+ v

i

2
)t   

 

� substituting into W = mad, we obtain 

 

 W = m(
v
f
- v

i

t
)(
v
f
+ v

i

2
)t     � t cancels, leaving 

 

 W = 
1

2
m(vf

2
 - vi

2
) = 
1

2
mvf

2
 - 
1

2
mvi

2
 

 

� and since Ek = 
1

2
mv

2
,  W = ∆∆∆∆Ek 

 

In other words, work is done against inertia to change kinetic energy.  If a force is 

exerted on a moving mass and its effect is to change the velocity of the mass, then 

work has been done against inertia. This is the net or useful work done. 

 

Example #3: A 60.0 kg lab cart is moving at 5.00 m/s, and is accelerated to 

12.0 m/s. How much work was done to cause this? 

 

(see Work-Energy Ex 3 for answer) 

 

 

Example #4: A force of 100 N is applied on a 50 kg cart that is moving with a 

speed of 6.0 m/s and has a force of friction of 20. N acting on it. At the end of 

10. seconds, the cart is going 22 m/s.  

a) How much work was done against inertia? 

b) How much work was done in total? 

 

(see Work-Energy Ex 4 for answer) 
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Total Work Done 
The work in moving any object can be done against more than one resisting 

quantity. For example, when you accelerate a car up a steep hill, the car’s engine is 

performing work against inertia, gravity and friction, all at the same time! 

 

The total work done by the engine is 

 

 W = ∆∆∆∆Ek + ∆∆∆∆Ep + Ffd �calculate each of these quantities separately,  

         then add them up. 

 

However, keep in mind that when your engine applies a force to move the car up 

the steep hill, this total work can also be determined by 

 

 W = FAppd  �where FApp is the force applied by the engine to  

        move the car up the hill. 

 

This second calculation can be used if you know what overall force is applied on 

an object, or can determine its value using vector analysis. 

 

 

Work done when the force is not constant. 

Because  W = Fd   and area  A = l x w, work is the area under a force vs. distance 

graph. If an applied force is not constant, simply graph the varying force vs. 

distance and calculate the area; this gives total work done. 

 

Example #5: A  5.0 kg cart is accelerated using a varying force.  The force  is a 

constant 10 N for 5 m, then increases at a constant rate up to 20 N for another 

10 m.  

a) What is the total work done on the cart? 

b) If the cart was going 24 m/s when this began, what is its speed now? 

            

       20 

 

       15 

         Force F 

       10 

            (N) 

        5 

 

        0 

    0             5           10  15 

    distance d (m) 

(see Work-Energy Ex 5 for answer) 
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Power 
Power is the work done per unit time, or the rate of doing work on an object.  As a 

formula,  

 

  P =
W

t
=
∆∆∆∆E

t
  where units are J/s, or watts (W) 

 

If work can be done against the forces of gravity, or inertia, or friction, then power 

is required to do the work.  For example: 

� power developed when doing work against gravity is given by: 

 

  P =
W

t
=
∆∆∆∆Ep

t
=
mg∆∆∆∆h

t
     

 

� power developed when doing work against inertia (i.e. accelerating) is given by:  

 

  P =
W

t
=
∆∆∆∆Ek

t
=

1

2
m(v f

2 - vi

2 )

t
 

 

� power developed from work done against friction is given by: 

 

  P =
W

t
=
F

f
d

t
=
µµµµFNd

t
 

 

� if work is done on all of these forces at the same time, then the total work is 

added together and divided by time:   

 

  P =
mg∆∆∆∆h + 1

2
m(v f

2 - vi

2 ) + µµµµFNd

t
 

 

 

Example #6:  A cart accelerates from 0 to 15 m/s in 60 sec.  What power is 

developed if the mass of the car is 20. kg?   

 

(see Work-Energy Ex 6 for answer) 
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Example #7:  For the diagram below, if the cart goes from the bottom to the 

top in 16 seconds, how much power was developed?    

 

  
(see Work-Energy Ex 7 for answer) 

 

  

Example #8: The cart below has an initial speed of 2.0 m/s and accelerates to 

5.0 m/s by the time it is at the top of the ramp.  How much power is 

developed?  Hint: to find time, use kinematics.   
 

          
(see Work-Energy Ex 8 for answer) 

 

 

Example #9:  Here there is a 22°°°° slope. The cart starts from rest at the bottom 

of the ramp and accelerates to 4.0 m/s by the time it reaches the top of the 

ramp.  With a coefficient of friction µµµµ = 0.21, how much power was developed?    

 

  
(see Work-Energy Ex 9 for answer) 
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One last point: a shortcut can be utilized to find average power developed by a 

moving vehicle of known velocity. To do so, examine the power equation carefully 

and perform these steps: 

 

 P =  � where     W = Fd � P =  

 

But recall from kinematics: d = vavt � vav ==  

 

 

By substitution, a new equation is produced:  P = Fvav 

 

This equation shows that the power developed in any moving object is directly 

proportional to the applied force that created it, as well as the average speed of the 

object. 

 

 

Example #10:  A motor driven sled of mass 10.0 kg moves at a constant speed of    

15 m/s over a horizontal surface of coefficient of friction µµµµ = 0.12.  What power 

would the motor have to develop to cause this to happen? 

  

(see Work-Energy Ex 10 for answer) 
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Conservation of Energy Part 1 
In previous grades, you learned the famous statement “energy is neither created nor 

destroyed, only transferred from one form to another”.  This really means that for 

any given event, the total energy contained in a system is constant, regardless of 

how different types of energy change during the event.  This is similar to the 

conservation of momentum theorem that was dealt with in the last section, except 

that since energy is a scalar quantity, no vector diagrams are required! 

 

However, unlike momentum (which has only one form and one equation), there are 

many forms of energy in nature. In Physics 12 however, we are given only two 

equations for two types of energy: Ep and Ek.  This limits our ability to utilize the 

conservation of energy theorem. 

 

Essentially, we can only examine systems or events where gravitational and kinetic 

energies are involved, as well as the heat energy produced when friction occurs.  

Such systems include: falling objects, roller coasters/ramps, pendulums and slides. 

 

To simplify things, in this section we will only examine conservation of energy 

problems in situations where friction can be ignored. 

 

Consider an object dropped from a height ‘h’ above the ground. When this mass falls 

from rest and loses vertical height, the loss of gravitational potential energy (Ep) is 

converted entirely to kinetic energy (Ek). 

 

     �at rest, Ek = 0 ∴   Etotal = Ep = mgh  

 

   mass 

   falls  �during the fall, Ep is converted to Ek 

 

 

   �at impact, Ep = 0     ∴   Etotal = Ek = 
1

2
mvf

2
 

 

� Since total energy remains the same from start to finish, in this example: 

mgh = 
1

2
mvf

2
 

 

Another way of looking at conservation of energy is to consider how energy is 

gained or lost. In the above example: 

  ∆∆∆∆Ep lost = ∆∆∆∆Ek gained � mg∆h = 
1

2
mvf

2
   

 

�Note that there is no initial speed vi in this situation. 
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Example #11:  A 35 kg mass falls 4.0 m to the ground.   

a) How much kinetic energy does it have when it strikes the ground? 

b) With what speed does it strike the ground?  

 

(see Work-Energy Ex 11 for answer) 

 

 

Now consider two identical balls: one dropped from a height ‘h’, the other rolling 

from rest at the same height down a frictionless incline of length ‘d’. 

 

 

 

       d 

        

     h 

    

        θθθθ    

 

 

It can be proven algebraically that with no friction, the final speed of each ball will 

be the same! 

 

� Using kinematics,    vf
2
 = vi

2
 + 2ad �     where vi = 0 

 

� Therefore,  vf =  

 

� For the left ball,   a = g and h = dsinθθθθ so vf =  

 

� For the right ball,  a = gsinθθθθ so once again, vf =  

 

This means that, so long as there is no friction, the speed of an object travelling on any 

path depends only on its change in height. Conservation of energy can be used to solve 

for unknown values based on this knowledge. 

 

 Keep in mind though, these two points:  

• We are only referring to speed, and not velocity, which is a vector quantity. 

• If there is significant friction, this shortcut for finding speed will not work.  

 

Example #12: In the diagram above, if the right ball has a mass of 5.2 kg and an 

initial speed of 1.4 m/s at the top of the 2.8-m high ramp, what will its speed be at 

the bottom of the ramp?     

 (see Work-Energy Ex 12 for answer) 
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Here’s a slightly more complex problem: energy conservation on a roller coaster. 

Once again, assume friction is negligible, as well as wind resistance, etc. 

 

  beginning position 

 

   vi 

 

 

                  final position 

           

     H                    vf 

 

           h 

            

 

 

Since the total energy is constant, and since friction is negligible,  

 

  the sum of Ep + Ek before = sum of Ep + Ek after 

 

Example #13:  If a cart of mass 10 kg and with an initial speed of 3.5 m/s rolls 

down a 50 m high frictionless incline and then proceeds to roll up another 

similar incline to a height of 20 m, what is the speed of the cart at this point?   

 

(see Work-Energy Ex 13 for answer) 

 

 

Finally, we’ll look at energy conservation in a frictionless pendulum. 

 

 

   At release, Ek = 0 

   ∴ Etotal = Ep 

        Here, Etotal = Ek + Ep 

 

          H 

            h 

 

    At bottom, Ep = 0 

    ∴ Etotal = Ek 

 

 

 

 



 4

Note the following: 

� Height is measured from the bottom of the pendulum’s swing. 

� At any point, the sum of Ek + Ep = total energy. 

� Since total energy is constant (cons. of energy): 

  Ep at highest point = Ek at lowest point 

� The change in height ∆h of a pendulum can be determined if the pendulum’s 

length ‘L’ is known as well as the angle θθθθ (from vertical) to which it was 

raised. 

  

      

                θθθθ         

     L 

         Lcos θθθθ 

        ∆h = L - L cos θθθθ       

      

        ∆h = L(1 - cos θθθθ) 

        ∆∆∆∆h 

 

 

 

Example #14:  A pendulum bob of mass 5.0 kg falls through a height of 25 cm as it 

swings from maximum height to lowest position.   

a) How fast is it going at the bottom? 

b) What is the energy of the bob at the bottom of the swing? 

c) What is the speed of the bob as it swings up past the bottom of its arc 

and rises 10 cm from the bottom position? 

d) What is the total energy at this position? 

e) What is the potential energy at this position?   

 

(see Work-Energy Ex 14 for answer) 

 

 

Finally, be clear on this: these frictionless systems do not exist, except at the sub-

atomic level. If they did, they would be described as perpetual motion systems that 

would continue to move without any additional energy required. 
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Conservation of Energy Part 2 
Where friction exists (i.e. everywhere on earth), heat and other forms of energy are 

produced, and must be considered when utilizing the conservation of energy theorem to 

solve problems. 

 

� total energy before = total energy after 
 

�  the sum of Ep + Ek  before  =  the sum of Ep + Ek + Heat etc.  after 

 

Example #15: Consider the  

diagram to the right showing           vi = 2.6 m/s 

a 60 kg student on a large slide. 

 

a) In the absence of friction, 

    what would her speed be at 

    the bottom?       4.2 m 

b) If her actual speed at the  

    bottom is 6.0 m/s, how much 

    heat was generated on the 

    section shown?  

 

(see Work-Energy Ex 15 for answer) 

 

 

Example #16:  An object of mass 12 kg starts from rest and slides down a ramp that 

has a vertical drop of 6.0 m.  Heat generated as the object moves down the ramp is 

310 J. 

a) How fast will the object be going at the bottom of the ramp? 

b) If the object then slides along a horizontal surface of µµµµ = 0.25, how far will it 

travel before coming to a rest?   

 

 

 

     6.0 m 

 

 

(see Work-Energy Ex 16 for answer) 

 

 

Note that the total energy of the object at the start of the run is mgh, equal to 706 J.  

At the end of the run, the entire 706 J of energy has gone up in heat, lost to the 

atmosphere. 
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Efficiency 

Because of heat generated (and essentially lost) due to friction, the energy left over 

as Ek and/or Ep is described as useful energy.  Efficiency is a way of comparing the 

total energy a system started with to the useful energy retained or converted after 

the event is finished: 

 

 Efficiency  =  useful energy transferred  x 100% 

         energy put in 
  

Example #17:  Consider the slide from Example #15.  Using the information from  

part (b) only, what is the efficiency of this section of the slide?  
 

(see Work-Energy Ex 17 for answer) 

 

 

Example #18:  In the following system, if H = 25 cm and h = 23 cm, what is the 

efficiency?   

A

B  ∆h  = H -  h

H
h

At  p oin t  A

t ot a l e n e r gy  is

E   = m gH
A

At  e n d  p oin t  of sw in g,

b a ll d oe s  n ot  r e a ch

in it ia l h e igh t  H (lose s  ∆h )

Tot a l e n e r gy   E   = m gh
B

 
(see Work-Energy Ex 18 for answer) 

 

 

Example #19:  Find the % efficiency of a long hit baseball of mass 200 g; the ball 

leaves the bat at 18 m/s and is caught in the field (same height as when it was hit) at 

a speed of 14 m/s.   

 

(see Work-Energy Ex 19 for answer) 

 

 

Remember that any frictionless system will always have an efficiency of 100%. In 

essence, it is a perpetual motion machine which would never require any additional 

energy to maintain its motion. 
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Now consider the efficiency of a collision between two masses. In most cases, 

when two (or more) moving objects collide, some of their kinetic energy is lost to 

heat, sound, etc. as a result of the impact. Whatever kinetic energy exists after the 

collision is less than the kinetic energy between the objects before the collision 

took place.  

 

In other words, kinetic energy is NOT conserved in most collisions. However, 

there are a few exceptions to this rule – e.g., collisions between molecular and 

nuclear particles, repelling magnetic objects, as well as very hard materials such as 

ball bearings. Collisions of this type – where kinetic energy IS conserved – are 

described as perfectly elastic. 

 

Some points you need to remember from this: 

� problems involving perfectly elastic collisions can be analyzed using either 

conservation of energy or momentum.  If the collision is not 100% elastic, 

ONLY conservation of momentum can be used to solve for unknowns. 

� if two equal masses in an oblique collision (as above) show a 90° angle after 

the collision, that collision is perfectly elastic. 

 

Example #20:  A 2.0 kg ball collides at 10. m/s with a much larger stationary 

8.5 kg ball as shown to the right. After the collision, the 2.0 kg ball changes its 

speed to 7.6 m/s @ 40°°°° N of E. 

a) At what speed ‘v’ does the 8.5 kg ball move after the collision? 

b) What is the efficiency of this system? 

                  7.6 m/s 

 

     10. m/s           40°°°° 

 

 N    2.0 kg            

                         8.5 kg           v 

 

              

        Before      After  

 

(see Work-Energy Ex 20 for answer) 

 

 

 

The next and final problem nicely summarizes both aspects of conservation of 

momentum and conservation of energy. It is described as a ballistic pendulum 

problem. 
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In a ballistic pendulum problem, a bullet or arrow is shot into a stationary soft 

pendulum, which then swings upwards. The object is to find the speed of the bullet 

or the height reached by the pendulum. 

 

 

 

 

 

 

 

         pendulum and bullet 

                Mp + mb at top of swing (v = 0) 

                vb 

      mb                   Mp          ∆∆∆∆h 

   bullet 

               pendulum   The swing upwards of 

        the pendulum and bullet 

 Bullet embeds into the    conserves energy. 

 pendulum block; the    

 collision is not elastic.     

 Energy is not conserved,           

 but momentum is. 

 

Use these steps (not necessarily in this order): 

� Use conservation of momentum to deal with the collision between the bullet 

and the pendulum, where: 

 

total momentum of bullet before collision 

    = total momentum of block & bullet after collision 

 

� Use conservation of energy to deal with the swing of the bullet and 

pendulum after the collision, where: 

 

 total energy at bottom of swing (Ek)  =  total energy at top of swing (Ep) 

 

 

Example #21:  A 0.015 kg bullet is fired horizontally into a 3.0 kg block of wood 

suspended by a long cord. The bullet sticks in the block. Compute the original 

velocity of the bullet if the impact causes the block to swing 10 cm above its initial 

level.   

 

(see Work-Energy Ex 21 for answer) 

 



Example #1. A 6.0 kg mass is raised from 1.5 m above the ground to 6.5 m high.                     

a) What work is done? 

b) What Ep does the mass now have? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #2.   A 150 kg object is pulled at constant velocity over a horizontal 

surface (µµµµ = 0.12) for a distance of 7.0 m. How much heat energy was 

generated?    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #3: A 60.0 kg lab cart is moving at 5.00 m/s, and is accelerated to 

12.0 m/s. How much work was done to cause this? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #4: A force of 100 N is applied on a 50 kg cart that is moving with a 

speed of 6.0 m/s and has a force of friction of 20. N acting on it. At the end of 

10. seconds, the cart is going 22 m/s.  

a) How much work was done against inertia? 

b) How much work was done in total? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #5: A  5.0 kg cart is accelerated using a varying force.  The force  is a 

constant 10 N for 5 m, then increases at a constant rate up to 20 N for another 

10 m.  

a) What is the total work done on the cart? 

b) If the cart was going 24 m/s when this began, what is its speed now? 

            

       20 

 

       15 

         Force F 

       10 

            (N) 

        5 

 

        0 

    0             5           10  15 

    distance d (m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #6:  A cart accelerates from 0 to 15 m/s in 60 sec.  What power is 

developed if the mass of the car is 20. kg?   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #7:  For the diagram below, if the cart goes from the bottom to the 

top in 16 seconds, how much power was developed?    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #8: The cart below has an initial speed of 2.0 m/s and accelerates to 

5.0 m/s by the time it is at the top of the ramp.  How much power is 

developed?  Hint: to find time, use kinematics.   

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #9:  Here there is a 22°°°° slope. The cart starts from rest at the bottom 

of the ramp and accelerates to 4.0 m/s by the time it reaches the top of the 

ramp.  With a coefficient of friction µµµµ = 0.21, how much power was developed?    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #10:  A motor driven sled of mass 10.0 kg moves at a constant speed of    

15 m/s over a horizontal surface of coefficient of friction µµµµ = 0.12.  What power 

would the motor have to develop to cause this to happen? 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #11:  A 35 kg mass falls 4.0 m to the ground.   

a) How much kinetic energy does it have when it strikes the ground? 

b) With what speed does it strike the ground?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #12: In the diagram above, if the right ball has a mass of 5.2 kg and an 

initial speed of 1.4 m/s at the top of the 2.8-m high ramp, what will its speed be at 

the bottom of the ramp?     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #13:  If a cart of mass 10 kg and with an initial speed of 3.5 m/s rolls 

down a 50 m high frictionless incline and then proceeds to roll up another 

similar incline to a height of 20 m, what is the speed of the cart at this point?   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #14:  A pendulum bob of mass 5.0 kg falls through a height of 25 cm as it 

swings from maximum height to lowest position.   

a) How fast is it going at the bottom? 

b) What is the energy of the bob at the bottom of the swing? 

c) What is the speed of the bob as it swings up past the bottom of its arc 

and rises 10 cm from the bottom position? 

d) What is the total energy at this position? 

e) What is the potential energy at this position?   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

Example #15: Consider the  

diagram to the right showing           vi = 2.6 m/s 

a 60 kg student on a large slide. 

 

a) In the absence of friction, 

    what would her speed be at 

    the bottom?       4.2 m 

b) If her actual speed at the  

    bottom is 6.0 m/s, how much 

    heat was generated on the 

    section shown?  

 

 



Example #16:  An object of mass 12 kg starts from rest and slides down a ramp that 

has a vertical drop of 6.0 m.  Heat generated as the object moves down the ramp is 

310 J. 

a) How fast will the object be going at the bottom of the ramp? 

b) If the object then slides along a horizontal surface of µµµµ = 0.25, how far will it 

travel before coming to a rest?   

 

 

 

     6.0 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #17:  Consider the slide from Example #15.  Using the information from  

part (b) only, what is the efficiency of this section of the slide?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #18:  In the following system, if H = 25 cm and h = 23 cm, what is the 

efficiency?   

A

B  ∆h  = H -  h

H
h

At  p oin t  A

t ot a l e n e r gy  is

E   = m gH
A

At  e n d  p oin t  of sw in g,

b a ll d oe s  n ot  r e a ch

in it ia l h e igh t  H (lose s  ∆h )

Tot a l e n e r gy   E   = m gh
B

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #19:  Find the % efficiency of a long hit baseball of mass 200 g; the ball 

leaves the bat at 18 m/s and is caught in the field (same height as when it was hit) at 

a speed of 14 m/s.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example #20:  A 2.0 kg ball collides at 10. m/s with a much larger stationary 

8.5 kg ball as shown to the right. After the collision, the 2.0 kg ball changes its 

speed to 7.6 m/s @ 40°°°° N of E. 

a) At what speed ‘v’ does the 8.5 kg ball move after the collision? 

b) What is the efficiency of this system? 
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Example #21:  A 0.015 kg bullet is fired horizontally into a 3.0 kg block of wood 

suspended by a long cord. The bullet sticks in the block. Compute the original 

velocity of the bullet if the impact causes the block to swing 10 cm above its initial 

level.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


