1. How much heat is needed to rise the temperature of 462 g of water from $24.0^{\circ} \mathrm{C}$ to $80.0^{\circ} \mathrm{C}$?
2. A 3.0 kg ball rolls down from the top of a ramp as shown. If the ball is moving at $10.0 \mathrm{~m} / \mathrm{sat}$ the bottom, how much energy was lost due to friction (thermal energy)?

$E_{p i}+E_{r_{i}}=E_{p s}+E_{k_{p}}+E_{t}$
$E_{p i}=E_{k_{f}}+E_{4}$

$$
E_{u}=E_{p i}-E_{k_{f}}=m g h_{i}-\frac{1}{2} m v_{f}^{2}
$$

$$
=\sum_{\text {raindrop }} 6 \sqrt{ }
$$

5. A 1.00 g raindrop traveling at $40.0 \mathrm{~m} / \mathrm{s}$ strikes the surface of 100 g of water in a glass. How much will the water's temperature change if we assume that:
i) all of the raindrop's kinetic energy is transformed into thermal energy, and
ii) the raindrop and the glass of water's temperatures are initially the same

* 3. A 0.240 kg chunk of carbon is heated to $215^{\circ} \mathrm{C}$ and quickly placed into 0.275 kg of water that has a temperature of $12{ }^{\circ} \mathrm{C}$. What will the final temperature of the water be?

$$
\begin{aligned}
E_{K} & =\frac{1}{3} m v^{2}=\frac{1}{2}(0.001)(90.0)^{2} \\
& =0.80 \mathrm{~J}
\end{aligned}
$$

* I won't put this on the test...

Since they will reach thermal equilibrium

$$
T_{1 f}=T_{2 f}
$$

Energy is consented so: $-\Delta E_{H_{1}}=\Delta E_{H_{2}}$

$$
\begin{aligned}
& -m_{1} c_{1} \Delta T_{1}=m_{2} c_{2} \Delta T_{2} \\
& -m_{1} c_{1}\left(T_{f}-T_{1 i}\right)=m_{2} c_{2}\left(T_{f}-T_{2 i}\right) \\
& -m_{1} c_{1} T_{f}+m_{1} c_{1} T_{1 i}=m_{2} c_{2} T_{f}-m_{2} c_{2} T_{21} \\
& T_{f}\left(m_{2} c_{2}+m_{1} c_{1}\right)=m_{1} c_{1} T_{1 i}+m_{2} c_{2} T_{2 i}
\end{aligned}
$$

fuN!

$$
\begin{aligned}
T_{f} & =\frac{m_{1} c_{1} T_{1 i}+m_{2} c_{2} T_{2} i}{m_{2} c_{2}+m_{1} c_{1}} \\
& =39^{\circ} \mathrm{C}
\end{aligned}
$$

