PHYSICS 12 CIRCUITRY WORKSHEET 4

1. What is the power consumption of a household heater that draws a current of 9 A when connected to a 120 V line?
2. A 75 W light bulb is used in a lamp connected to a 120 V power source.
a) What current flows through the bulb?
b) What is the resistance of the bulb under these conditions?
3. A small heating coil has a resistance of 20Ω.
a) Assuming R is constant, what would an ammeter in the circuit read if the applied p.d. is 100 V ?
b) How much heat will be generated in R in 100 s ?
4. An electric iron of resistance 20Ω takes a current of 5.0 A . Calculate the heat energy developed in 30 s .
5. A household appliance was inadvertently left on for an entire week while a family was away on vacation. A steady current of 5.0 A was drawn from the 120 V line. The cost of electricity in the area is 5 cents per kWh .
a) How much power is needed by the appliance?
b) How much energy (in Joules) was used?
c) How much did it cost to run the appliance?
6. A well-groomed physics student blows his hair dry every morning using a 1200 W hair dryer. On average, it takes him 5 minutes each time he uses it. The cost of electricity in his area is 5 cents per kWh . What is the annual cost for running the hair dryer?
7. A 20 V lamp designed to dissipate 80 W is placed in series with a resistor \mathbf{R} and a 60 V dc source. What value should \mathbf{R} be for the lamp to operate properly?
8. A $25 \mathrm{~W}, 120 \mathrm{~V}$ bulb has a cold resistance of 45Ω and a hot resistance of 575Ω. When the voltage is switched on,
a) what is the instantaneous current?
b) what is the current after a few minutes of normal operation?
9. A light bulb is designed for use in a 120 V circuit. If by mistake it is plugged into a 240 V circuit,
a) what will happen to the current through it?
b) what will happen to the power of the light bulb? Explain.
10. For the diagram to the right, determine the power consumed in each resistor.

$\begin{array}{llllll}\text { 1. } 1.08 \times 10^{3} \mathrm{~W} & \text { 2. a) } 0.625 \mathrm{~A} & \text { b) } 192 \Omega & \text { 3. a) } 5 \mathrm{~A} & \text { b) } 5.0 \times 10^{4} \mathrm{~J} \quad 4.1 .5 \times 10^{4} \mathrm{~J} \quad \text { 5. a) } 600 \mathrm{~W} & \text { b) } 3.63 \times 10^{8} \mathrm{~J}\end{array}$
c) $\$ 5.00 \quad 6 . \$ 1.837 .10 \Omega 8$ 8. a) $2.67 \mathrm{~A} \quad$ b) $0.209 \mathrm{~A} \quad 9$. a) doubles b) quadruples $10.24 \mathrm{~W}, 6 \mathrm{~W}, 18 \mathrm{~W}$
