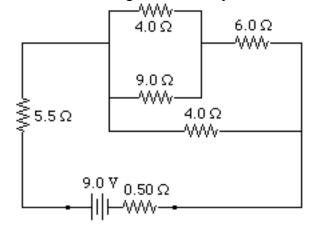
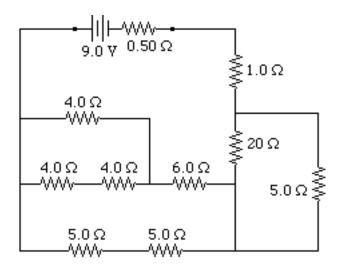
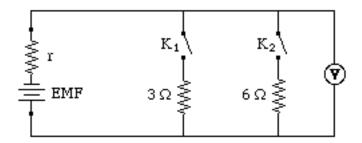

PHYSICS 12 CIRCUITRY WORKSHEET 5


1. The diagram below shows a circuit containing a battery with an EMF of 12.0 V and an internal resistance of 0.48Ω .


- a) What is the current through the battery?
- b) What is the terminal voltage of the battery?
- 2. A battery has an EMF of 12.5 V. When a current of 35 A is drawn from it, its terminal voltage is 11.45 V. What is the internal resistance of the battery?
- 3. A dry cell with an EMF of 1.5 V and an internal resistance of 0.050Ω is "shorted out" with a piece of wire of resistance only 0.20Ω . What will a voltmeter read if it is connected to the terminals of the dry cell at this time?
- 4. Determine the value of R in the circuit below, if the current through the battery is 5.0 A.


- 5. In the following diagram, the battery has an EMF of 9.0 V and an internal resistance of 0.50Ω .
 - a) What current does it supply?
 - b) What is the total power dissipated by the circuit?
 - c) What is the terminal voltage of the battery?

- 6. Given an EMF of 9.0 V and an internal resistance of 0.50 Ω in the following diagram, determine:
 - a) the current supplied by the battery.
 - b) the terminal voltage.

- 7. In the following circuit, when K_1 is closed and K_2 open, the voltmeter (which has a very high resistance) reads 12 V. However, when K_1 is open and K_2 closed, the voltmeter reads 16 V.
 - a) Calculate the EMF and internal resistance of the power supply.
 - b) Calculate the voltmeter reading if both switches are closed.

