Example \#1: A 10 ampere current flows through a wire in $\mathbf{6 0}$ seconds. Determine:
a) The amount of charge that moves in $\mathbf{6 0}$ seconds.
b) The number of electrons that pass in $\mathbf{6 0}$ seconds.
a) $I=\frac{q}{t}$

$$
\Rightarrow q=10(60)=6.0 \times 10^{2} \mathrm{C}
$$

b)

$$
\begin{aligned}
& 600 \mathrm{C} \times \frac{1 \mathrm{e}^{-}}{1.6 \times 10^{-19} \mathrm{C}} \\
& =\frac{3.8 \times 10^{21} \mathrm{e}^{-}}{}
\end{aligned}
$$

Example \#2: If a current of 5.0 A flows for 20 minutes, what charge was transferred?

$$
\begin{aligned}
& 20 \text { minutes } \times \frac{60 \mathrm{~s}}{1 \mathrm{mi} \pi}=1200 \mathrm{~s} \\
& I=\frac{q}{t} \Rightarrow q=5.0(1200) \\
& q=6.0 \times 10^{3} \mathrm{C}
\end{aligned}
$$

Example \#3: Determine the unknown currents for each of the following circuits.

Example \#4: If a chemical cell gives 600 J of energy to a charge of 50 C , what is the potential difference of this cell?

$$
V=\frac{\Delta E_{p}}{q}=\frac{600}{50}
$$

Example \#5: Determine the unknown voltages for each of the following circuits.

\rightarrow all circuit loops must total 36 V

Example \#6: A small light bulb is connected to 3.0 V and will draw 150 mA .
(a) What is the net resistance of the bulb?
(b) If the voltage dropped to 2.0 V , how would the current change?

$$
\text { a) } \begin{aligned}
150 \mathrm{~mA} & =0.150 \mathrm{~A} \\
R=\frac{V}{I} & =\frac{3.0}{0.15}=20 \Omega
\end{aligned}
$$

b) $I=\frac{V}{R}=\frac{3.0}{20}=1.2 \times 10^{2} \mathrm{~V}$

Example \#7: Consider the following circuit diagram showing two resistors attached in series to a battery of two 1.5 V cells. Determine all unknown voltages, currents and resistances for each apparatus in the circuit.

$$
\mathrm{V}_{\mathrm{o}}=\text { pod. of } 2-1.5 \text { cells in series }
$$

Since cells connected in series have their voltages added together, the total voltage,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =2 \mathrm{x} 1.5 \mathrm{~V} \\
& =3.0 \mathrm{~V}
\end{aligned}
$$

$$
\rightarrow \text { in series, } \begin{aligned}
R_{0} & =1000+2000 \\
& =3000 \Omega
\end{aligned}
$$

$$
\rightarrow I_{0}=\frac{V_{0}}{R_{0}}=\frac{3}{3000}=1.0 \times 10^{-3} \mathrm{~A}
$$

\rightarrow in series, I is constant, so

$$
I_{1}=I_{2}=1.0 \times 10^{-3} \mathrm{~A}
$$

Finally,

$$
\begin{aligned}
V_{1}=I_{1} R_{1} & =.001(1000) \\
& =1.0 \mathrm{~A} \\
V_{2}=I_{2} R_{2} & =.001(2000) \\
& =2.0 \mathrm{~A}
\end{aligned}
$$

Example \#8: Use your calculator to add these resistors in parallel:
(a) $25 \Omega, 30 \Omega, 50 \Omega$
(b) $50 \Omega, 68 \Omega, 270 \Omega, 569 \Omega$
a)

$$
\begin{aligned}
& \frac{1}{R_{0}}=\frac{1}{25}+\frac{1}{30}+\frac{1}{50} \\
& R_{0}=11 \Omega
\end{aligned}
$$

b)

$$
\begin{aligned}
& R_{0}=\left[\frac{1}{50}+\frac{1}{68}+\frac{1}{270}+\frac{1}{569}\right]^{-1} \\
& R_{0}=25 \Omega
\end{aligned}
$$

Example \#9: Consider the following circuit diagram showing two resistors attached in parallel to a battery of two 1.5 V cells. Determine all unknown currents, voltages and resistances.

$$
\begin{aligned}
& \rightarrow R_{0}=\left[\frac{1}{1000}+\frac{1}{2000}\right]^{-1}=\underset{(667)}{6.7 \times 10^{2} \Omega} \\
& \rightarrow I_{0}=\frac{V_{0}}{R_{0}}=\frac{3.0}{667}=4.5 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

\rightarrow voltage drop across each resistor equals voltage gain by battery, so

$$
V_{1}=V_{2}=3.0 \mathrm{~V}
$$

\rightarrow Finally,

$$
\begin{aligned}
& I_{1}=\frac{V_{1}}{R_{1}}=\frac{3.0}{1000}=3.0 \times 10^{-3} \mathrm{~A} \\
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{3.0}{2000}=1.5 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

Example \#10: In this example $R_{1}=5.0 \Omega, R_{2}=10 \Omega$ and $R_{3}=15 \Omega$ and the total current is 10 A . Find the current in each branch.

$$
\begin{aligned}
& R_{0}=2.7 \Omega \\
& \rightarrow \text { first Find } R_{0}=\left[\frac{1}{5}+\frac{1}{10}+\frac{1}{15}\right]^{-1} \\
&=2.7 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow V_{0}=I_{0} R_{0}=10(2.7)=27 \mathrm{~V}(27.3) \\
& \rightarrow V_{1}=V_{2}=V_{3}=27 \mathrm{~V}
\end{aligned}
$$

$\rightarrow \quad$ finally, $\quad I_{1}=\frac{27.3}{5}=5.5 \mathrm{~A}$

$$
\begin{aligned}
& I_{z}=\frac{27.3}{10}=2.7 \mathrm{~A} \\
& I_{3}=\frac{27.3}{15}=1.8 \mathrm{~A}
\end{aligned}
$$

(check: $\quad I_{1}+I_{2}+I_{3}=10 \mathrm{~A}$)

Example \#11: Complete the table for the circuit on the previous page:

\rightarrow Redraw a simplified circuit:

$$
\begin{aligned}
& \rightarrow R_{0}=10+12+4.8+15=42 \Omega \\
& \rightarrow I_{0}=\frac{60}{41.8}=1.4 \mathrm{~A}(1.44)
\end{aligned}
$$

\rightarrow analyzing simplified diagram, current through each resistance $=1.44 \mathrm{~A}$ (continued next page)
\rightarrow now find voltage drop for each resistance in simplified diagram, using $V=I \Omega$

\rightarrow at this point, check voltage:

$$
14+17+6.9+22=59.9 \sim 60 \mathrm{~V}
$$

\rightarrow finally, go back to original diagram:

\rightarrow using voltage drops, and $I=\frac{V}{R}$, current through parallel resistors can be determined

Example \#12: Calculate all unknown voltages, currents and resistances for the following circuits:

\rightarrow see below for explanation
For circuit 1:
\rightarrow find R_{0}, then I_{0}
\rightarrow current through $1.25 \Omega, 1.0 \Omega$ resistors is the same as the battery, so use $V=I R$ to find voltage drops in those resistor is
\rightarrow finally, use Kirchhoff's Voltage rule to find voltage drop across $2.0 \Omega, 14 \Omega$ resistors, then $I=\frac{V}{R}$ to find current $f(\Omega)$ in those resistors.

For circuit 2 :
\rightarrow find R_{0}, then I_{0}
\rightarrow current across 2.0Ω resistor $=I_{0}$ for battery, so use $v=\mathbb{R}$ to find voltage drop in this resistor
\rightarrow use Kirchhoff Voltage rule to find drop in 5.0Ω resistor, then find current in this resistor
\rightarrow use Kirchhoff Current rule to find current flow in 2.25Ω resistor, then $V=I R$ to find voltage in this resistor
\rightarrow finally, use Kirchhoff Voltage rule to find missing drops in each of 7Ω, 21Ω resistor, and Ohm's Law to find current in each resistor

Example \#13: From the circuit diagram for example 11, calculate the power used by each resistor connected in the circuit.
\rightarrow since all voltages + currents are known, use $P=I V$ to solve for each resistor:

$$
\begin{aligned}
& 10 \Omega \rightarrow 20 \omega \\
& 20 \Omega \rightarrow 15 \omega \\
& 30 \Omega \rightarrow 9.9 \omega \\
& 8.0 \Omega \rightarrow 5.9 \omega \\
& 12 \Omega \rightarrow 4.0 \mathrm{~N} \\
& 15 \Omega \rightarrow 30 \omega
\end{aligned}
$$

Note: power provided by buttery

$$
=1.44 \times 60=86 \mathrm{w}
$$

\rightarrow this is equal (within error for rounding) to the total power used by the resistors.

Example \#14: Find the cost of operating a kettle for 15 min if it draws 10 A from a standard 120 V outlet, and the cost is $5.5 \mathrm{f} / \mathrm{kWh}$.

$$
\begin{aligned}
& \rightarrow 15 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=0.25 \mathrm{hr} \\
& \rightarrow P=I V=10(120)=1200 \mathrm{~W} \\
& \rightarrow 1200 \mathrm{w}=1.26 \mathrm{~W}
\end{aligned}
$$

\rightarrow energy used: $P=\frac{\Delta E}{t}$

$$
\begin{aligned}
\Delta E & =1.2(0.25)=0.30 \mathrm{~kW} \cdot \mathrm{~h} \\
\rightarrow \mathrm{cost} & =0.30 \mathrm{k} 0 . \mathrm{h} \times \frac{5.055}{k \omega \cdot \hbar} \\
& =\$.017
\end{aligned}
$$

Example \#15: An electric fan draws 2.0 A of current from a 120 V source.
Determine the following:
(a) the power rating of the fan.
(b) its electrical resistance.
(c) the cost of operation of the fan during the month of August, assuming it is run continuously and electric energy costs 10 cents per kilowatt hour.
a) $P=I V=2.0(120)$

$$
P=2.4 \times 10^{2} \mathrm{~W}
$$

b) $R=\frac{V}{I}=\frac{120}{2.0}=60 \Omega$
\rightarrow could also use $P=\frac{V^{2}}{R}$ to solve

$$
\text { c) } \begin{aligned}
\text { \#houss } & =31 \text { days } \times \frac{24 \mathrm{hr}}{1 \text { day }} \\
& =744 \mathrm{hr} .
\end{aligned}
$$

power is 0.24 kw

$$
\begin{gathered}
P=\frac{\Delta E}{t}, \Delta F=.24(744) \\
\Delta E=178.56 \mathrm{~kW} \cdot \mathrm{~h} \\
\cos t=178.56 \mathrm{k}=\frac{\Delta 0 . \mathrm{h}}{} \times \frac{\$.10}{\text { kwth }} \\
=\$ 18.86)
\end{gathered}
$$

Example \#16: A 6.0 volt motor is used to winch a 0.056 kg mass a vertical distance of $0.65 \mathbf{m}$ in 5.62 sec . What current will the motor draw?
\rightarrow use $P=I V$
\rightarrow must find power first

$$
\begin{aligned}
P & =\frac{\Delta E}{t}=\frac{m g \Delta h}{t} \\
& =\frac{.056(9.8)(.65)}{5.62} \\
& =6.35 \times 10^{-2} \mathrm{~W} \\
I & =\frac{P}{V}=\frac{.35672}{6.0} \\
I & =1.06 \times 10^{-2} \mathrm{~A}
\end{aligned}
$$

Example \#17: When a 6.0 V EMF battery was connected to a 15Ω resistance, a current of 375 mA occurred and the voltmeter reading was 5.625 V .
(a) Find the internal resistance r of this supply.
(b) If this battery in now connected to a 5.0Ω resistor, what current will flow?

$$
\text { a) } \begin{aligned}
& V_{T}=\varepsilon-I r \quad \begin{array}{l}
\text { where } V_{T}= \\
\\
\text { voltmeter reading }
\end{array} \\
& 5.625=6.0-.375 r \\
& r=1.0 \Omega
\end{aligned}
$$

$$
\text { b) } R_{0}=5.0 \Omega
$$

$$
V_{T}=\sum-I r \text { and } V_{T}=I R_{0}
$$

$$
\text { so } I R_{0}=\varepsilon-I r \Rightarrow \varepsilon=I R_{0}+\operatorname{Ir}
$$

$$
\rightarrow I=\frac{\varepsilon}{R_{0}+r}=\frac{6}{5+1}
$$

$$
I=1.0 \mathrm{~A}
$$

Example \#18: A battery of EMF 8.0 V and internal resistance $r=1.0 \Omega$ is connected to an external circuit as shown. Find:
(a) the equivalent resistance of the circuit.
(b) the total current leaving the battery.
(c) the potential difference between the terminals of the battery.

a) using appropriate techniques to simplify,

$$
R_{0}=1+2+4=7.0 \Omega
$$

b) using $V_{T}=\varepsilon-I r$ and $V_{T}=I R_{0}$,

$$
I=\frac{\varepsilon}{R_{0}+r}=\frac{8.0}{7+1}=1.0 \mathrm{~A}
$$

c) $V_{T}=I R_{0}=1.0(7.0)=7.0 \mathrm{~V}$

