PHYSICS 12 CIRCUITRY WORKSHEET 3

1. Calculate all unknown resistances, currents and voltages for all devices in each of the following circuits.
a)

b)

e)

2. For the circuit shown below, determine the value of the following:
a) the equivalent resistance for the entire circuit;
b) the current drawn from the battery.
c) the current in the 100Ω resistor.
d) the voltage drop across the 500Ω resistor.

3. For the following circuit, determine each of the following:
a) the equivalent resistance of the entire circuit.
b) the total current drawn from the battery.
c) the voltage readings across A-B, B-C, C-D, B-D and D-E.
d) the current through each resistor.

4. Four identical resistors are connected in parallel, as shown below. The current is 2.0 A with all four resistors in the circuit. What will the current be if the wire at ' \mathbf{x} ' is cut?

5. a) $600 \Omega, 100 \mathrm{~A}$ (constant throughout), $1 \mathrm{~V}, 2 \mathrm{~V}, 3 \mathrm{~V}$
b) (6 V constant through each device): $54.5 \Omega, 0.11 \mathrm{~A}, 0.06 \mathrm{~A}, 0.03 \mathrm{~A}, 0.02 \mathrm{~A}$
c) battery: $20 \Omega \& 3 \mathrm{~A}$; left parallel resistors: $1.5 \mathrm{~A} \& 15 \mathrm{~V}$; right parallel resistors: $1.8 \mathrm{~A}, 1.2 \mathrm{~A} \& 36 \mathrm{~V}$ each; 3Ω resistor: $9 \mathrm{~V} \& 3.0 \mathrm{~A}$
d) battery: $10 \Omega \& .58 \mathrm{~A}$; resistors in parallel: $.096 \mathrm{~A}, .29 \mathrm{~A}, .193 \mathrm{~A}, 2.32 \mathrm{~V}$ for each; 6Ω resistor: $.58 \mathrm{~A} \& 3.48 \mathrm{~V}$
e) battery: $6 \Omega \& 1 \mathrm{~A} ; 3 \Omega$ resistor: $3 \mathrm{~V} \& 1 \mathrm{~A}$; middle resistor: $3 \mathrm{~V} \& 0.5 \mathrm{~A} ; 2 \Omega$ resistor: $0.5 \mathrm{~A} \& 1 \mathrm{~V}$; diagonal resistor: $2 \mathrm{~V} \& 0.33 \mathrm{~A}$; top resistor \& right side resistor: $1 \mathrm{~V} \& 0.17 \mathrm{~A}$ each
6. a) 648Ω b) 0.019 A c) $0.0033 \mathrm{~A} \mathrm{d)} 9.3 \mathrm{~V}$
7. a) 28Ω b) 2.1 A c) $25 \mathrm{~V}, 1.2 \mathrm{~V}, 15.9 \mathrm{~V}, 17 \mathrm{~V}, 16 \mathrm{~V} \mathrm{~d})$ clockwise from $\mathrm{A}: 2.1 \mathrm{~A}, .71 \mathrm{~A}, .71 \mathrm{~A}, .19 \mathrm{~A}, .38 \mathrm{~A}$, $.65 \mathrm{~A}, .8 \mathrm{~A}, 1.3 \mathrm{~A}$
8. 1.5 A
