Electrostatics Notes
1 - Charges and Coulomb's Law
Ancient Greeks discovered that if amber (fossilized sap) is rubbed it will attract small objects. This is similar to when you run a comb through your hair...it will then attract bits of lint or dust. WHY?!?

Clearly this attraction is due to some FORCE at work. In this case it is electrostatic force which exists between electrically charged objects.

Conductors are materials that. allow electrons to flow.

A negative charge is caused by..an
excess of electrons.

Insulators are materials that...impede electron flow.
A positive charge is caused by...a lack of electrons.

It is possible to build up a charge on insulators because electrons cannot...
easily flow off of $(-)$ or onto (t) an insulator.
When a vinyl strip is rubbed with fur or wool the rod gains an excess of electrons and therefore is negative. If an acetate strip is rubbed with silk then it will lose electrons and become \qquad positive.

The Law of Charges states:
(1) Like charges repel.
(2) Opposite charges attract.
${ }^{(3)}$ Neutral charges are attracted to charged (tor -) objects.

But what about that so-called amber effect? Why are seemingly uncharged objects attracted to charged amber (or combs for that matter)?
It has to do with something called... INDUCTION!
charged with
(extra electrons
Consider a rubber balloon that has been rubbed on someone's hair and a tin can.

Note that the electrons on the can...are able to move freely so that as the can rolls a + charge always faces the balloon.

Other examples of electrostatic charges in everyday life include:
(1) Rubbing your feet on the carpet then touching a doorknob.
(2) Jumping on a trampoline Then stepping on the motel rail.
${ }^{(3)}$ When you pull your clothes out of the dryer, the sock sticks to your sweater.

Ok enough playing around, where's the formulas?!?
Coulomb determined that the force between two charged objects is proportional to their charges and inversely proportional to the square of their distances or:

There are two important things to notice from this equation.

$$
F_{E}=\frac{K q_{1} q_{2}}{r^{2}}
$$

Where:

$$
\begin{aligned}
\mathrm{q}_{1} & =1^{\text {st }} \text { charge, in Coulombs }(\mathrm{C}) \\
\mathrm{q}_{2} & =2^{\text {nd }} \text { charge, " } \\
\mathrm{r} & =\text { distance between charges } \\
\mathrm{k} & =\text { Coulomb's Constant } \\
& =9.0 \times 10^{9} \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{c}^{2}}
\end{aligned}
$$

First, this equation is quite similar to... universal g nevitation

$$
F_{y}=\frac{G m_{1} m_{2}}{r^{2}}
$$

Second, electrostatic forces are much stronger than gravitational forces.

$$
G=6.67 \times 10^{-31} \frac{\mathrm{Nm}_{\mathrm{m}} \mathrm{~b}^{2}}{} \text { whereas } K=9.0 \times 10^{9} \frac{\mathrm{~N}_{\mathrm{m}^{2}}^{\mathrm{c}^{2}}}{}
$$

There is a very important difference between gravitational and electrostatic forces:
Gravity ALWAYS...attracts
Electrostatic force can..attract or repels
When solving for electrostatic forces we will NOT...use $+/$ - signs of charges
even though force is a vector.
Instead we will determine the direction of the force based on...
Whether it is an attraction or repulsion

Example:
Two 85 kg students are 1.0 m apart. What is the gravitational force between them?

$$
\begin{aligned}
F_{g} & =\frac{G m_{1} m_{2}}{r^{2}}=\frac{\left(6.67 \times 10^{-11}\right)(85)(85)}{(1.0)^{2}} \\
& =4.82 \times 10^{-7} \mathrm{~N}
\end{aligned}
$$

If these two students each have a charge of $2.0 \times 10^{-3} \mathrm{C}$, what is the electrostatic force between them?

$$
\begin{aligned}
F_{E} & =\frac{K q_{1} q_{2}}{r^{2}}=\frac{\left(9.0 \times 10^{9}\right)\left(2.0 \times 10^{-3}\right)\left(2.0 \times 10^{-3}\right)}{(1.0)^{2}} \\
& =36000 \mathrm{~N}
\end{aligned}
$$

Example:
Two point charges of $1.8 \times 10^{-6} \mathrm{C}$ and $2.4 \times 10^{-6} \mathrm{C}$ produce a force of $2.2 \times 10^{-3} \mathrm{~N}$ on each other. How far apart are these two charges?

$$
\begin{aligned}
F_{E} & =\frac{K q_{1} q_{2}}{r^{2}} \\
V & =\sqrt{\frac{K q_{1} q_{2}}{F_{E}}} \\
& =\sqrt{\frac{\left(9.0 \times 10^{9}\right)\left(1.8 \times 10^{-6}\right)\left(2.4 \times 10^{-6}\right)}{\left(2.2 \times 10^{-3}\right)}} \\
& =4.2 \mathrm{~m}
\end{aligned}
$$

Example:
A charge of $1.7 \times 10^{-6} \mathrm{C}$ is placed $2.0 \times 10^{-2} \mathrm{~m}$ from a charge of $2.5 \times 10^{-6} \mathrm{C}$ and $3.5 \times 10^{-2} \mathrm{~m}$ from a charge of -2.0×10^{-6} as shown.

(B)
(c)

$$
2.5 \times 10^{-6} \mathrm{C} \quad-2.0 \times 10^{-6} \mathrm{C}
$$

since $A+B$ are positive
they repel
What is the net electric force on the 1.7×10^{-6} charge?

$$
\begin{aligned}
F_{n e} & =\frac{F_{A B}-F_{A C}}{} \\
& =\frac{K_{q_{A} q_{B}}}{r_{A B}^{2}}-\frac{K q_{A} q_{c}}{r_{A C}^{2}} \\
& =\frac{\left(9.0 \times 10^{9}\right)\left(1.7 \times 10^{-6}\right)\left(2.5 \times 10^{-6}\right)}{\left(2.0 \times 10^{-2}\right)^{2}}-\frac{\left(9.0 \times 10^{9}\right)\left(1.7 \times 10^{-6}\right)\left(2.0 \times 10^{-6}\right)}{\left(3.5 \times 10^{-2}\right)^{2}} \begin{array}{l}
\text { don if user } \\
\text { negative sign }
\end{array} \\
& =\frac{71 N}{}
\end{aligned}
$$

Electrostatics Notes

2 - Electric Field on a Single Charge

There are many similarities between gravitational and electrostatic forces. One such similarity is that both forces can be exerted on objects that are not in contact.

In the same way that any mass is surrounded by a gravitational field, we will imagine that any charge object is surrounded by an electric field.

Similar to gravitational fields, an electric field will depend on:
size of and distance to the charge.
In fact we define an electric field as the force per unit charge:
this is just like grave fields: $g=\frac{F_{g}}{m}$

Where:

$$
\vec{E}=\frac{K q}{r^{2}}
$$

In the case of electric fields we are dealing with another example of a \qquad -.
Therefore the field is a vector quantify
In order to show this we always draw the field lines as \qquad arrows .

Again there is an important difference between gravitational fields and electric fields due to the fact that...

We therefore define the direction of an electric field as
Would move in that ficil.

the direction a positive charge

1
1
1
1

1
1

1

You will remember that the strength of a vector field is indicated by the density of the arrows, therefore the field is always strongest...

Example:
What is the electric field strength at a point where a 2.00 uC charge experiences an electric force of $5.30 \times 10^{-4} \mathrm{~N}$?

$$
F_{E}=\vec{E}_{q}
$$

$\vec{E}=\frac{F_{E}}{q}=\frac{5.30 \times 10^{-4} \mathrm{~N}}{2.00 \times 10^{-6} \mathrm{C}}$

$$
=265 \mathrm{~N} / \mathrm{c}
$$

Example:
At a distance of $7.50 \times 10^{-1} \mathrm{~m}$ from a small charged object the electric field strength is $2.10 \times 10^{4} \mathrm{~N} / \mathrm{C}$. At what distance from this same object would the electric field strength be $4.20 \times 10^{4} \mathrm{~N} / \mathrm{C}$?

Electrostatics Notes

3 - Electric Field from Multiple Charges

We have already seen how charged particles emit electric fields, but how do these fields interact when two or more charges act on each other?

Consider two positively charged particles:

Note that the electric lines of force work... in opposition to each other.
Because this electric field is a force field, it is a vector. So when multiple fields overlap we simply...

add them up as vectors.

OK, now try two opposite charges:

Again the two fields interact, only this time they...vei force each other

Example:

Two 5.25 uC charges are 0.40 m apart. What is the strength of the electric field between them at a point 0.10 m away from the first charge and 0.30 m away from the second?

$5.25 \times 10^{-6} \mathrm{C}$
$\vec{E}_{1}=\frac{K q_{1}}{r_{1}^{2}}=4725000 \mathrm{~N} / \mathrm{C}$
$\vec{E}_{2}=\frac{k_{2}}{r_{2}^{2}}=525000 \mathrm{~N} / \mathrm{c}$

Example:
Find the magnitude and direction of the electric field at the point P due to the charges as shown.

$$
\vec{E}_{1}=\frac{K q_{1}}{r_{1}^{2}}=3000 \mathrm{~N} / \mathrm{C}
$$

$$
\vec{E}_{2}=\frac{k_{q_{2}}}{r_{2}^{2}}=3556 \mathrm{~N} / \mathrm{c}
$$

$$
\begin{aligned}
\vec{E}_{T} & =\sqrt{\vec{E}_{1}^{2}+\vec{E}_{2}^{2}} \\
& =\frac{4650 \mathrm{~N} / \mathrm{C}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{\vec{E}_{2}}{\overrightarrow{E_{1}}} \\
& \theta=\tan ^{-1}\left(\frac{\overrightarrow{E_{2}}}{E_{1}}\right)=\tan ^{-1}\left(\frac{3556}{3000}\right) \\
& =50^{\circ}
\end{aligned}
$$

Electrostatics Notes
4 - Electric Potential, Electric Potential Difference and
Electric Potential Energy
First let's examine electric potential energy. If a charged object is in an electric field it has electric potential energy - that is it has the potential to move in that field. Note that the potential energy it has could be used
to...attract or repel depending on the changes.
A non-uniform field, such as that provided by a point, is one which has a different... strengths and directions (depending on position)

In this case we can derive a formula for the electric potential energy in a NON-UNIFORM FIELD:

$$
\begin{aligned}
W=E_{p} & =F_{F} \cdot d \\
& =\left(\frac{k_{q} \cdot q_{2}}{r^{2}}\right) d=\frac{k_{q} \cdot q_{2}}{r}
\end{aligned}
$$

$$
E_{p}=\frac{k q_{1} q_{2}}{r}
$$

Again note the similarities between...
Example:
How much work must be done to bring a 4.0 uC charged object to within 1.0 m of a 6.0 uC charged object from a long way away?

In this case bringing a positive charge near another positive charge requires \qquad therefore the work is \qquad positive .

Example:
How much work must be done to bring a -7.0 uC charged object to within 0.5 m of a 5.0 uC charged object from a long way away?

In this case, bringing a negative charge near a positive charge releases energy therefore work is \qquad negative.

Electric Potential
Now we need to consider a new quantity, electric potential (V). Electric potential is defined as the electric potential energy per unit charge.

NOTE:
(1) The electric potential is defined in terms of the moving of a positive charge. Therefore... + charges...move towards low potential - charges...move towards high potential
(2) The unit for potential is... v_{0} l is (V)

Example:
Calculate the potential at point P as shown in the diagram.

NOTE:
(1) Potentials are... Scalar
quantities
(2) We WILL use... + and - signs of charges

Potential Difference

We sometimes want to determine the electric potential between two points. This is known as the potential difference.

For example, given two points A and B, the potential difference between A and B is:

$$
V_{A B}=V_{B}-V_{A}
$$

NOTE: When we talk about potential at a point we are talking about the potential difference between that point and infinity, where the potential at infinity is ZERO.

Example: What is the potential difference between points A and B due to the charge shown?

$$
\begin{aligned}
V_{A B} & =V_{B}-V_{A} \\
& =\frac{k_{q}}{r_{B}}-\frac{k_{q}}{r_{A}} \\
& =\frac{\left(9.0 \times 10^{9}\right)\left(8.00 \times 10^{-4}\right)}{0.50}-\frac{\left(9.0 \times 10^{9}\right)\left(8.00 \times 10^{-4}\right)}{1.00} \\
& =72000 \mathrm{~V}
\end{aligned}
$$

Electrostatics Notes

5 - Equipotential Lines and Changes in Energy

Potential Difference

We sometimes want to determine the electric potential between two points. This is known as the potential difference.

For example, given two points A and B, the potential difference between A and B is:

$$
\Delta V=V_{2}-V_{1}
$$

NOTE: When we talk about potential at a point we are talking about the potential difference between that point and infinity, where the potential at infinity is ZERO.

Topographical Maps:

- Since gravitational potential energy depends on height, lines of constant height would be gravitational equipotentials. A map of such lines is called a topographical map. Typically, a topographical map shows equally spaced lines of constant elevation.
- Where the lines are most closely spaced the elevation is changing most sharply, in other words the terrain is steep.

Changes in Energy

A $4.0 \times 10^{-9} \mathrm{C}$ charge of mass $2.4 \times 10^{-21} \mathrm{~kg}$, is initially located at point $\mathbf{A}, 3.0 \mathrm{~m}$ from a stationary $6.0 \times 10^{-8} \mathrm{C}$ charge.
a) How much work is required, by an external agent, to move the $4.0 \times 10^{-9} \mathrm{C}$ charge to a point $\mathbf{B}, 0.50 \mathrm{~m}$
from the stationary charge?

$$
\begin{aligned}
& E_{p i}=\frac{\left(9 \times 10^{-9}\right)\left(4 \times 10^{-9}\right)\left(6 \times 10^{-0}\right)}{3.0}=7.2 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

b) If the $4.0 \times 10^{-9} \mathrm{C}$ charge is now released from point \mathbf{B}, what will be its velocity when it passes back through point \mathbf{A} ?

$$
\begin{aligned}
& \Delta E_{k}=-\Delta E_{p}=3.6 \times 10^{-6} \mathrm{~J} \quad E_{k_{i}}=0 \\
& \therefore E_{k_{f}}=\frac{1}{2} m v_{f}^{2} \quad V=\sqrt{\frac{2 E_{k}}{m}} \\
&=\sqrt{\frac{2\left(3.6 \times 10^{-6}\right)}{2.4 \times 10^{-21}}} \\
&=\sqrt{5.48 \times 10^{7} \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

Electrostatics Notes

6 - Electric Potential in Uniform Electric Fields

If we examine the electric field between charged plates we will find that it is..uniform in strength and direction
Notice that the density of the lines is also... uniform

Ln a uniform electric field we cannot use our previous formula:
$E=\frac{K_{g} \leftarrow}{r^{2} \leftarrow \text { individual charge }}$
This formula is only valid for describing the strength of non-unfform fields (point charges only!!!)
To find an equation for uniform fields, we will once again draw a parallel with gravitational potential energy.

Consider a mass sitting in a uniform gravitational field at some height.
The mass will tend to move from. high potential (height)
to low potential
As it does it.... If we allow the mass to fall the work done on it $\left(\mathrm{W}=\Delta E_{p}\right)$ is negative. If we want
 to lift the mass to a certain height we need to do positive work on it.

A charged object in an electric field will behave in the same way, accelerating from an area of...high potential to low potential
As it does it..potential energy is converted into kinetic
In the same way that we would do positive work on an object to lift it against gravity, we need to do work to bring a positive charge near a plate with positive potential.

To calculate the work done in this case we can use the formula:

$$
\mathrm{W}=\Delta \mathrm{E}_{\mathrm{p}}=\mathrm{Fd}
$$

It is often easier, however, to describe the work done in a uniform field using the

In order to determine the electric field between two charged plates we must use the formula:

Where:

$$
\begin{aligned}
& \mathrm{E}=\text { electric field }(N / C) \\
& \Delta \mathrm{V}=\text { potential difference }(\mathrm{U}) \\
& \mathrm{d}=\text { distance between plates }(\mathrm{m})
\end{aligned}
$$

Example:
An electron is accelerated from rest through a potential difference of $3.00 \times 10^{4} \mathrm{~V}$. What is the kinetic energy gained by the electron?

$$
\begin{aligned}
& \begin{array}{|l|l}
0 \mathrm{~V} & 3000 \mathrm{~V} \\
\mid \theta &
\end{array} \\
& \Delta E_{k}=-\Delta E_{p} \\
& \Delta E_{p}=\Delta U_{q} \\
& =(30000 v)\left(-1.6 \times 10^{-19} \mathrm{C}\right) \\
& =-4.8 \times 10^{-15}
\end{aligned}
$$

Example:
A proton, initially at rest, is released between two parallel plates as shown.
a) What is the magnitude and direction of the electric field?

- Field is + to - \therefore right

$$
\vec{E}=\frac{\Delta V}{d}=\frac{800 \mathrm{~V}}{0.025 \mathrm{~m}}=32000 \mathrm{~N} / \mathrm{C}
$$

b) What is the magnitude of the electrostatic force acting on the proton?

$$
\begin{aligned}
F_{E} & =\vec{E} q=(32000 \mathrm{~N} / \mathrm{c})\left(1.6 \times 10^{-19} \mathrm{c}\right) \\
& =5.12 \times 10^{-15} \mathrm{~N}
\end{aligned}
$$

c) What is the velocity of the proton when it exits the -400 V plate?

$$
\begin{aligned}
\Delta E_{p} & =\Delta V_{q} \\
& =(-800 \mathrm{~V})\left(1.6 \times 10^{-19} \mathrm{C}\right) \\
& =-1.28 \times 10^{-16} \mathrm{~J}
\end{aligned}
$$

$$
\Delta E_{k}=-\Delta E_{p}
$$

$$
\Delta E_{u}=1.28 \times 10^{-16} \mathrm{~J}
$$

$$
\Delta E_{u}=E_{u_{s}}-E_{u_{i}}^{10}
$$

$$
\begin{gathered}
E_{u_{f}}=\frac{1}{2} m v^{2} \quad v=\sqrt{\frac{2 E v}{m}}=\sqrt{\frac{2(1.28}{1.6}} \\
v=3.92 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
E_{u_{f}}=\frac{1}{2 m v^{2}} \quad v=\sqrt{\frac{2 E v}{m}}=\sqrt{\frac{8\left(1.28 \times 10^{-16}\right)}{1.67 \times 10^{-27}}}
$$

Electrostatics Notes

8 - Cathode Ray Tubes

Non-flat screen TVs and monitors work by directing a beam of high speed particles at a film of fluorescing chemicals. These charged particles are accelerated by electrically charged plates. After they are sped up, the beam can be directed by very precise control of another set of charged plates. Consider the following problem:

Example:
A beam of electrons is directed to a region between oppositely charged parallel plates as shown in the diagram below.

1) The electron beam is produced by accelerating electrons through an electric potential difference of 380 V .
What is the speed of the electrons as they leave the 380 V plate?
$\Delta E_{p}=\Delta V q$
$\Delta E_{k}=-\Delta E_{p} \quad \Delta E k=E u_{f} \quad V_{f}=\sqrt{\frac{2 E_{k}}{m}}$
$=(380 \mathrm{~V})\left(-1.6 \times 10^{-19} \mathrm{C}\right)$
$=-6.08 \times 10^{-17} \mathrm{~J}$
$=6.08 \times 10^{-17} \mathrm{~J} \quad E_{n_{f}}=\frac{1}{2} m v_{f}^{2}=\sqrt{\frac{2\left(6.08 \times 10^{-17} \mathrm{~J}\right)}{9.11 \times 10^{-31} \mathrm{hg}}}=1.16 \times 10^{7} \mathrm{~m} / \mathrm{s}$
2) What is the electrostatic force on electrons in the region between the horizontal plates when they are connected to a 9.0 V potential difference?

4(deflecting)

$$
\vec{E}=\frac{\Delta V}{d}=\frac{9 V}{0.020 \mathrm{~m}}=450 \mathrm{~N} / \mathrm{c} \quad F_{E}=\vec{E} q=7.2 \times 10^{-17} \mathrm{~N}
$$

3) What is the acceleration of the electrons between the deflecting plates?

$$
F_{\text {net }}=F_{E}=m a=\frac{F_{E}}{m}=\frac{7.2 \times 10^{-17} \mathrm{~N}}{9.11 \times 10^{-31} \mathrm{Vy}}=7.90 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}
$$

4) What is the final magnitude and direction of the velocity of the electrons as it leaves the second set of plates?

5) How could you cause the beam to bend a. more?
i) increase deflecting voltage
ii) decrease accelerating voltage
b. less?

$$
\begin{array}{l|ll}
x & y \\
V_{x}=1.16 \times 10^{7} & V_{y}=? & V_{x}=\frac{d x}{t} \\
d_{x}=0.12 & V_{y 0}=0 & t=\frac{d x}{V_{x}}=\frac{0.12 \mathrm{~m}}{1.16 \times 10^{7 \mathrm{~m} / \mathrm{s}}} \\
t= & a_{y}=7.90 \times 10^{13 \mathrm{~m} / \mathrm{s}^{2}} \\
d_{y}= & =1.034 \times 10^{-8} \mathrm{~s}
\end{array}
$$

$$
V_{y}=V_{y o}+a t
$$

i) decrease deflecting voltage

$$
=0+\left(7.90 \times 10^{13}\right)\left(1.034 \times 10^{8}\right)
$$

ii) increase accelerating voltage

$$
\begin{aligned}
v_{y} \\
v_{x}
\end{aligned} \underbrace{}_{v_{y}} \quad v_{y}=\sqrt{v_{y}^{2}+v_{x}^{2}} .
$$

