PHYSICS 12 ELECTROSTATICS WORKSHEET 1

- 1. How much force is exerted between two charged objects that are separated by a distance of 1.5 m if both objects have a charge of +3.0 C?
- 2. Deuterium atoms contain one proton and one neutron in the nucleus with one electron orbiting at a distance of 5.10×10^{-11} m.
 - a) Calculate the magnitude of the gravitational force of attraction between the nucleus and the electron.
 - b) Calculate the magnitude of the electrical force of attraction between the nucleus and the electron.
- 3. A metal sphere has a net charge of -4 C. How many excess electrons does the metal sphere contain?
- 4. What is the total charge of 1 gram of electrons?
- 5. An *alpha* particle (2 protons, 2 neutrons) is placed between two stationary, charged objects as shown. It is 0.0030 m to the right of the object carrying a $+1.0 \times 10^{-12}$ C charge and 0.0020 m to the left of the object carrying a -2.0×10^{-12} C charge, as shown below.

- a) What is the net magnitude and direction of the electrical force acting on the α particle? b) At what rate and in what direction will the α particle accelerate?
- 6. The force of attraction between two equal but opposite 3.0μ C charges is 4.0×10^{-3} N. What distance separates the charges?
- 7. In each of the following diagrams, solve for the new force F_{AB} :

If all charges A, B and C are identical, and if the force acting on charges B-C is $F_{BC} = 1.2 \times 10^{-3} \text{ N}$, then determine the <u>net force</u> on charge B, including direction.

10. Examine the position of the charges to the right. If the triangle shown is equilateral, and the force acting on charges A-B is F_{AB} = 3.0 x 10⁻³ N, then determine the magnitude and direction of :
a) the net force on C;
b) the net force on B.

1. 3.6×10^{10} N 2. a) 7.8 x 10^{-47} N b) 8.8 x 10^{-8} N 3. 2.5×10^{19} 4. -1.76×10^{8} C 5. a) 1.76×10^{-15} N right b) 2.63 x 10^{11} m/s² right 6. 4.5 m 7. a) 1.3×10^{-6} N b) 6.0×10^{-4} N c) 9.0×10^{-6} N d) 2.0×10^{-3} N 8. a) 588 N b) 532 N 9. 3.8×10^{-3} N @ 72° down to left 10. a) 9.0×10^{-3} N horizontal to right b) 1.1×10^{-2} N @ 46° up to left