PHYSICS 12 ELECTROSTATICS WORKSHEET 2

1. A source charge \mathbf{q} exerts an electrical force of $4.0 \times 10^{-17} \mathrm{~N}$ on an electron located at point P. What is the electric field strength at point P ?
2. How much force is exerted on an alpha particle (see sheet \#1) by an electric field when the α particle is placed at a location where the electric field strength is $75 \mathrm{~N} / \mathrm{C}$?
3. The force on a charge of $-2.0 \times 10^{-4} \mathrm{C}$ is measured and found to be 0.24 N in a downward direction. What is the electric field at this point?
4. Compute:
a) the electric field intensity E in air at a distance of 30.0 cm from a point charge $\mathrm{q}_{1}=5.0 \times 10^{-9} \mathrm{C}$.
b) the force on a charge $\mathrm{q}_{2}=4.0 \times 10^{-10} \mathrm{C}$ placed 30.0 cm from q_{1}.
5. A charge of $6.0 \mu \mathrm{C}$ experiences a force of $2.0 \times 10^{-3} \mathrm{~N}$ in the +x -direction at a certain point in space.
a) What was the electric field at that location before the charge was placed there?
b) Describe the force a $-2.0 \mu \mathrm{C}$ charge would experience if it were used in place of the $6.0 \mu \mathrm{C}$ charge.
6. A dipole is made up of two charges, $\mathbf{q}=+3 \mathrm{C}$ and $\mathbf{Q}=-3 \mathrm{C}$, that are separated by a distance of 1.0 m . What is the electric field strength of the field set up by these two charges at a point exactly halfway between them?
7. For the situation shown to the right, find:

b) the force on a $4.0 \times 10^{-8} \mathrm{C}$ charge placed at P.
c) where in the region the electric field would be zero. (Hint: 2 equations)
8. A plastic sphere carrying a negative charge of $3.2 \times 10^{-19} \mathrm{C}$ is held stationary by an electric field of $2.0 \times 10^{4} \mathrm{~N} / \mathrm{C}$. What is the weight of the sphere?
9. As shown to the right, two identical $1.0 \times 10^{-4} \mathrm{~kg}$ balls carry identical charges and are suspended by two threads of equal length. Find the charge on either ball. (Hint: examine one ball only; the $\mathbf{F}_{\mathbf{E}}$ on it is the same as for the other)

10. The potential energy of a proton is $5.0 \times 10^{-18} \mathrm{~J}$ at a certain point in an electric field. What is the electric potential at this point if the proton is removed?
11. An object with charge $\mathbf{q}=2.0 \times 10^{-16} \mathrm{C}$ is located 1.0 cm from another object with charge $\mathbf{Q}=2.0 \times 10^{-10} \mathrm{C}$.
a) What is the potential energy of \mathbf{q} ?
b) What is the electric potential at the point occupied by \mathbf{q} if \mathbf{q} is removed?
12. A proton is located 0.80 m from a source charge $\mathbf{Q}=3.0 \mathrm{C}$.
a) How much work is required to move the proton to a point 0.50 m from \mathbf{Q} ?
b) What force was used to move the proton?
13.

14. $\mathrm{A}+\mathbf{9 . 0} \boldsymbol{\mu} \mathbf{C}$ charge is placed at point \mathbf{P} in the diagram above.
a) Determine the net force acting on the $+\mathbf{9 . 0} \boldsymbol{\mu} \mathbf{C}$.
b) Determine the potential energy of the $+\mathbf{9 . 0} \boldsymbol{\mu} \mathbf{C}$ due to the other two charges.

1. $2.5 \times 10^{2} \mathrm{~N} / \mathrm{C} \quad 2.2 .4 \times 10^{-17} \mathrm{~N} \quad 3.1 .2 \times 10^{3} \mathrm{~N} / \mathrm{C}$ up 4. a) $500 \mathrm{~N} / \mathrm{C}$ b) $2.00 \times 10^{-7} \mathrm{~N}$, repulsive 5. a) $3.3 \times 10^{2} \mathrm{~N} / \mathrm{C}$ in x -dir b) $6.7 \times 10^{-4} \mathrm{~N}$ in x -dir $6.2 .2 \times 10^{11} \mathrm{~N} / \mathrm{C}$
2. a) $9.0 \times 10^{5} \mathrm{~N} / \mathrm{C}$ b) $3.6 \times 10^{-2} \mathrm{~N}$ to right c) 0.10 m to the right of the $-5.0 \times 10^{-8} \mathrm{C}$ charge $8.6 .4 \times 10^{-15} \mathrm{~N}$ $9.0 .10 \mu \mathrm{C} \quad 10.31 \mathrm{~V} \quad 11$. a) $3.6 \times 10^{-14} \mathrm{~J}$ b) $180 \mathrm{~V} \quad 12$. a) $3.2 \times 10^{-9} \mathrm{~J} \quad$ b) $1.1 \times 10^{-8} \mathrm{~N}$
3. a) $2.5 \times 10^{5} \mathrm{~N} / \mathrm{C}$ @ 31° left of line A-P b) $1.2 \times 10^{4} \mathrm{~V}$ 14. a) 2.3 N @ 31° left of line A-P b) 0.11 J
