Vectors and Kinematics Notes

1 - Review

Velocity is defined as the change in displacement with respect to time.

Ex: A sprinter runs from the 50.0 m mark to the 100.0 m mark in 4.50 s , what is his velocity?

Note that this formula is only valid for finding constant velocity or average velocity. Also, if acceleration is constant:

> Ex: A car traveling at $22 \mathrm{~m} / \mathrm{s}$ slows down to $14 \mathrm{~m} / \mathrm{s}$ in 3.00 s . What is its average velocity during this time?

Ex: A jet traveling at $65 \mathrm{~m} / \mathrm{s}$ accelerates at $25 \mathrm{~m} / \mathrm{s}^{2}$ for 8.00 s . What is its final velocity?

There are three kinematics equations that use these variables.

1) \square
\square
Whenever an object undergoes acceleration, we need to rely on our 3 kinematics equations. The variables for these are:
V_{o} :
a:
d:
t:
2)

3)

Ex: A textbook high cliff and later. What is displacement?	opped from a e ground 3.5 s ok's	Remember: acceleration due to gravity near the Earth's surface is the same for all objects regardless of mass!!! $g=$ \qquad Note:
air at $14.2 \mathrm{~m} / \mathrm{s}$. point of release? Note: Displacements, velocities and accelerations can all be negative because they are vectors, which have both a \qquad and \qquad	Note: Displacements, velocities and accelerations can all be negative because they are vectors, which have both a\qquad and\qquad	

Vector and Kinematics Notes
 2 - Graphs

There is certain information that can be taken from position vs. time (d vs. t) and velocity vs. time (v vs. t) graphs.
For Example:
d vs. t graphs:

Given the information from the $\mathbf{v} v s . t$ graph we can complete the \mathbf{x} and a vs. \mathbf{t} graphs

In Physics 12 you will be expected to perform more advanced graphical analysis on tests and in labs. EVERY time you make a graph you should follow the following rules.

- Label the axis
 variable on the x -axis
\qquad variable on the y-axis
- Give the graph an \qquad .
- Scale each axis
$>$ Use...
$>$ Choose a scale that is...
$>$
- Plot the points and draw a \qquad .
- Determine if the curve is \qquad or not

What's wrong with the graph on the left?

There are a 4 types of curve that you will be expected to recognize and manipulate

Direct Relationship:

Quadratic Relationship:

Inverse Relationship:

Finding Slope

To find the slope of a straight line:

- Choose...
- Choose them as...
- Use only...

Remember the equation of a line is:

Curve Straightening

An astronaut on a Planet X drops his hammer and notes how far it falls each second. Plot a graph using the following data:

$\mathbf{d}(\mathbf{m})$	$\mathbf{t}(\mathbf{s})$
1.9	1
9.2	2
17.1	3
33.2	4
48.4	5

a. What relationship is this?

$\mathbf{d ~ (m)}$	$\left.\mathbf{t}^{\mathbf{2}} \mathbf{(s}^{\mathbf{2}}\right)$
1.9	
9.2	
17.1	
33.2	
48.4	

b. What relationship is this?
c. Calculate the slope.
d..What does the slope represent?

Determine the slope and y-intercept of the graph shown and write the equation describing this line.

Vectors and Kinematics Notes

3 - Vectors and Navigation

SCALAR	VECTOR

When we draw vectors we represent them as
\qquad _.

Vector Addition
Whenever we add vectors we use...

To find the total or resultant vector, simply draw...
\square
Ex. A block of wood sits on a desk. Student A pushes it with 10.0 N north and Student B pushes with 20.0 N west. What is the total force exerted on the block?

Vector Addition - Trig Method

In the previous example we added perpendicular vectors which gave us a nice simple right triangle.
In reality it's not always going to be that easy.

Ex. A zeppelin flies at $15 \mathrm{~km} / \mathrm{h} 30^{\circ} \mathrm{N}$ of E for 2.5 hr and then changes heading and flies at $20 \mathrm{~km} / \mathrm{h} 70^{\circ} \mathrm{W}$ of N for 1.5 hr . What was its final displacement?

In order to solve non-right angle triangles, we will need to be familiar with the Sine Law and the Cosine Law.

Sine Law:

Cosine Law:

Vector Addition - The Component Method

There is another method that we can use when adding vectors. This method is a very precise, stepwise approach, however it is the only way we can add 3 or more vectors.

When adding two vectors using the component method, start with a vector diagram. Then resolve each vector to be added into its x and y components (the x and y are arbitrary - but more useful since they relate to a coordinate plane). Trigonometry can be used to determine the horizontal and vertical components of vectors.

REMEMBER:

Ex. An airplane heading at $450 \mathrm{~km} / \mathrm{h}, 30^{\circ}$ north of east encounters a $75 \mathrm{~km} / \mathrm{h}$ wind blowing towards a direction 50° west of north. What is the resultant velocity of the airplane relative to the ground?

Vector Subtraction

With vectors a negative sign indicates that...

When subtracting vectors we still draw them tip to tail, except...

We generally subtract vectors when dealing with a \qquad in a vector quantity. Recall:
Change =

Draw the Following

Ex: A cyclist is traveling at $14 \mathrm{~m} / \mathrm{s}$ west when he turns due north and continues at $10 \mathrm{~m} / \mathrm{s}$. If it takes him 4.0 s to complete the turn what is the magnitude and direction of his acceleration?

Vectors and Kinematics Notes
 4 - Relative Velocity and Navigation

Whenever we talk about displacement or velocity, we must specify the reference point or reference frame from which it is measured, to avoid confusion about the values of the d or v.

For example, suppose a person is traveling on a train at $50 \mathrm{~km} / \mathrm{h}$. The person walks in the direction of the train's motion with a speed of $5 \mathrm{~km} / \mathrm{h}$. Then a person outside of the train will see the person walking at a speed of \qquad .

How can two people see different values for the same person?
When inside the train, our measurement of the speed is "relative to" or "with respect to" the train, while outside, our measurement of the speed is "relative to" or "with respect to" Earth.

Calculating Relative Velocity with Reference Frames

A man walks to the right with a velocity of $2 \mathrm{~m} / \mathrm{s}$ on a platform that moves with a velocity of $1 \mathrm{~m} / \mathrm{s}$ to the right.
a) What is his velocity relative to the platform?

Reference frame: \qquad
$\mathrm{V}_{\text {person-platform }}=$ \qquad m/s
b) What is the person's velocity relative to the ground?

Reference frame: \qquad
$\mathrm{v}_{\text {person-ground }}=\mathrm{v}_{\text {platform }}+\mathrm{v}_{\text {person-platform }}$

$\mathrm{V}_{\text {person-ground }}=$ \qquad m/s + \qquad m/s
$\mathrm{v}_{\text {person-ground }}=$ \qquad m / s

Ex: A student in a canoe is trying to cross a 40.0 m wide river that flows to the east at $8.0 \mathrm{~m} / \mathrm{s}$. The student can paddle at $14.0 \mathrm{~m} / \mathrm{s}$.
a) If he points due north and paddles, how long will it take him to cross?
NOTE:
b) What will be his velocity (relative to his starting point) in part a?
NOTE:
c) If he needs to end up directly across from his starting point, what direction should he head? NOTE:
d) In part c , how long will it take to cross the river?

Vector and Kinematics Notes

5 - Projectile Motion

Projectiles in 1-D
Ahh when life was simpler...
Ex: A hiker stands on the edge of a 25 m cliff and throws his backpack straight up at $15 \mathrm{~m} / \mathrm{s}$. Calculate its velocity just before it hits the bottom of the cliff.

Projectiles in 2-D
They grow up so fast...(:)
There are a few common variations on these old classics. Just remember that the x and y -components are
\qquad and therefore \qquad . For this reason we will always separate their data and calculations.

Nothing crosses this line or there will be trouble...

Y-components

\qquad because it is

Ex 1: A student sits on the roof of their house which is 12 m high. She can launch water-balloons from a slingshot at $25 \mathrm{~m} / \mathrm{s}$. If she fires a water-balloon directly horizontally:
a. How long will it be airborne?
b. How far will it travel?

* How long it is airborne only depends on: \qquad
* How far it travels in the x-direction depends only on: \qquad and \qquad

Ex 2: A quarterback launches a ball to his wide receiver by throwing it at $22.0 \mathrm{~m} / \mathrm{s}$ at 35° above horizontal.
a. How far downfield is the receiver?
b. How high does the ball go?
c. At what other angle could the quarterback have thrown the ball and reached the same displacement?

Ex 3: A cannon sits on a 65 m high cliff (typical Trask...so typical...). A cannonball is fired at $42 \mathrm{~m} / \mathrm{s} 55^{\circ}$ above the horizontal.
a. How long is it airborne?
b. What is its final velocity?
c. What is its maximum height relative to the ground below?

