The Law of Conservation of Momentum

Ex. A clown is stuck on a sheet of frictionless ice. He hurls one of his clown shoes with momentum of $80 \mathrm{kgm} / \mathrm{s}$ east. What is his momentum before and after he throws his shoe?

$$
\begin{aligned}
\rho_{i} & =0 \text { (not moving) } \\
\rho_{f} & =80 \mathrm{kgn}_{\mathrm{g}} / \mathrm{s}+\left(-80 \mathrm{kgn}_{\mathrm{gn}}\right) \\
& =0
\end{aligned}
$$

Ex: A fullback is traveling to the right with a momentum of $120 \mathrm{kgm} / \mathrm{s}$ while a linebacker is traveling to the left with a momentum of $110 \mathrm{kgm} / \mathrm{s}$. If they stick together, what is their total momentum before and after they collide?

$$
\rho_{i}=\rho_{1}+\rho_{2}=120 \mathrm{kgm} / \mathrm{s}+(-110 \mathrm{kgm} / \mathrm{s})
$$

$$
=10 \mathrm{kgn} / \mathrm{s}
$$

$$
P_{f}=10 \mathrm{kgm} / \mathrm{s}<S A M E
$$

The Law of Conservation of Momentum:

In an isolated system, momentum is not created or destroyed during any interaction (collision).

An isolated system means... no external forces act on the system.

$$
\rho_{i}=\rho_{t}
$$

$m_{1} V_{1 i}+m_{2} V_{2 i}=m_{1} V_{1 f}+m_{2} V_{2 f}$

Ex: A 7.1 kg bowling ball is rolling to the right at $3.8 \mathrm{~m} / \mathrm{s}$ when it collides with a stationary 0.40 kg bowling pin. After the collision, the bowling ball is traveling at 2.9 m / s to the right. How fast is the pin moving after the collision?

Before

$v_{1 i}=3.8 \mathrm{~m} / \mathrm{s}$

$$
V_{2 i} i=0
$$

After

$m_{1} v_{1 i}+m_{2} \vec{v}_{2 i}^{0}=m_{1} v_{1 f}+m_{2} v_{2 f}$
$m_{1} v_{1 i}=m_{1} v_{1 f}+m_{2} v_{2 f}$
$v_{2 f}=\frac{m_{1} v_{1 i}-m_{1} v_{1 f}}{m_{2}}=\frac{(7.1 \mathrm{~kg})(3.8 \mathrm{~m} / \mathrm{s})-(7.1 \mathrm{~kg})(2.9 \mathrm{~m} / \mathrm{s})}{0.40 \mathrm{~kg}}$

$$
=16 \mathrm{~m} / \mathrm{s}
$$

Ex: A 0.25 kg cue ball is traveling east at $4.5 \mathrm{~m} / \mathrm{s}$ when it collides head on with a 0.25 kg eight ball traveling west at $5.0 \mathrm{~m} / \mathrm{s}$. After the collision the cue ball is traveling west at $2.0 \mathrm{~m} / \mathrm{s}$. What is the final velocity of the eight ball?

After

$$
V_{2 f}=\frac{m_{1} v_{1 i}+m_{2} v_{2 i}-m_{1} v_{1 t}}{m_{2}}
$$

$$
\begin{aligned}
& =\frac{(0.25 \mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})+\left(0.25 \mathrm{~kg}_{g}\right)(-5.0 \mathrm{~m} / \mathrm{s})-\left(0.25 \mathrm{~kg}_{\mathrm{g}}\right)(-2.0 \mathrm{~m} / \mathrm{j})}{0.25 \mathrm{~kg}} \\
& =1.5 \mathrm{~m} / \mathrm{s} \text { or } 1.5 \mathrm{~m} / \mathrm{s}(\text { East })
\end{aligned}
$$

2) Inelastic Collisions:

Ex: A $0.105-\mathrm{kg}$ hockey puck moving at $48 \mathrm{~m} / \mathrm{s}$ is caught by a $75-\mathrm{kg}$ goalie at rest. If the ice is frictionless, at what velocity will the goalie slide on the ice after catching the puck?
Before
$V_{1 i}=48 \mathrm{~m} / \mathrm{s}$

$V_{2 i}=0$

$m_{1} V_{1 i}+m_{2} V_{2 i}=m_{+} V_{f} \leftarrow \begin{aligned} & \text { consider them as } \\ & \text { one object. }\end{aligned}$

$$
m_{1} V_{1 i}=m_{+} V_{f}
$$

$$
\begin{aligned}
V_{f} & =\frac{m_{1} v_{1} i}{m_{r}}=\frac{\left(0.105 \mathrm{k}_{\mathrm{g}}\right)(48 \mathrm{~m} / \mathrm{s})}{\left(75.105 \mathrm{~kg}_{\mathrm{g}}\right)} \\
& =0.067 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex: A $35.0-\mathrm{g}$ bullet strikes a $5.0-\mathrm{kg}$ stationary wooden block and embeds itself in the block. The block and bullet move together at $8.6 \mathrm{~m} / \mathrm{s}$. What was the original velocity of the bullet?
Before
After

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} V_{2 i}^{\prime}=m_{+} v_{f} \\
& V_{1 i}=\frac{m_{+} v_{f}}{m_{1}}=\frac{(5.035 \mathrm{~kg})(8.6 \mathrm{~m} / \mathrm{s})}{0.035 \mathrm{~kg}} \\
&=1200 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3) Explosions

Ex: A firecracker sits in a 7.0 kg pumpkin. After it explodes, the pumpkin splits into two chunks. A 5.0 kg piece travels west at $10.0 \mathrm{~m} / \mathrm{s}$. What is the mass and velocity of the other piece? (Ignore the mass of the firecracker)

$$
m_{1} v_{i}^{0}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

$$
0=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

$$
V_{2 f}=\frac{-m_{1} v_{1 f}}{m_{2}}=\frac{-(5.0 \mathrm{~kg})(-10.0 \mathrm{~m} / \mathrm{s})}{2.0 \mathrm{~kg}}
$$

$$
=25 \mathrm{~m} / \mathrm{s}
$$

Worksheet 6.3 -Collisions

1) A 30.0 kg object moving to the right at a velocity of 1.00 m / s collides with a 20.0 kg object moving to the left with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. If the 20.0 kg object continues to move to the left at a velocity of $1.25 \mathrm{~m} / \mathrm{s}$, what is the velocity of the 30.0 kg object?
2) A 925 kg car moving at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ right collides with a stationary truck of unknown mass. The two vehicles lock together and move off at a velocity of $6.50 \mathrm{~m} / \mathrm{s}$. What is the mass of the truck?
3) A 50.0 g bullet strikes a 7.00 kg wooden block. If the bullet becomes imbedded in the block and they both move off at a velocity of $5.00 \mathrm{~m} / \mathrm{s}$, what was the initial speed of the bullet?
5. A 40.0 g hot dog moving with a velocity of $9.00 \mathrm{~m} / \mathrm{s}$ to the right collides with a 55.0 g hot dog bun with a velocity of 6.00 m / s to the left. If the two objects stick together upon collision, what is the velocity of the combined masses?
6. A 76 kg student, standing at rest on a frictionless surface throws a 0.20 kg cream pie horizontally at $22 \mathrm{~m} / \mathrm{s}$ at Mr. Trask who is standing to the student's left. What was the velocity of the student after they throw the pie?
7. A 25 kg turkey is fired from a $1.1 \times 10^{3} \mathrm{~kg}$ turkey launcher. If the horizontal velocity of the turkey is $325 \mathrm{~m} / \mathrm{s}$ east, what is the recoil of the launcher?
8. A rail vehicle with a rocket engine is being tested on a smooth track. Starting from rest the engine is fired for a short period of time, releasing $4.5 \times 10^{2} \mathrm{~kg}$ of gases. It is estimated that the average velocity of the gases is 1.4×10^{3} m / s to the right, and that the maximum velocity of the vehicle is $45 \mathrm{~m} / \mathrm{s}$ left. What is the mass of the vehicle?
