<u>Vectors and Kinematics Notes</u> **4 – Vector Addition and Subtraction**

SCALAR	VECTOR	Whenever we add vectors we use
		To find the total or resultant vector, simply draw
When we draw vectors v	we represent them as	
paddle at 3.2 m/.		ver that flows due East at 2.0 m/s. The student can
a. If he points due North a	nd paddles how long will it take	e him to cross the river?
b. What is his total velocit	y relative to his starting point in	n part a?
. If hd. 4d d:	waalla Namila aanaa dha waxay ƙasa	on his stanting point substituted in a should be taken
c. If he needs to end up dii	ectly North across the river fro	m his starting point, what heading should he take?
1 77 1 212 2 1 12		
d. How long will it take hi	m to cross the river at this head	ling?

<u>Vector Addition – Trig Method</u>

In the previous example we added perpendicular vectors which gave us a nice simple right triangle.

In reality it's not always going to be that easy.

Ex. A zeppelin flies at 15 km/h 30° N of E for 2.5 hr and then changes heading and flies at 20 km/h 70° W of N for 1.5 hr. What was its final displacement?	In order to solve non-right angle triangles, we will need to be familiar with the Sine Law and the Cosine Law. Sine Law: Cosine Law:

<u>Vector Addition – The Component Method</u>

There is another method that we can use when adding vectors. This method is a very precise, stepwise approach, however it is the only way we can add 3 or more vectors.

- **Draw** each vector
- **Resolve** each vector into x and y components
- Find the **total sum** of x and y vectors
- Add the x and y vectors
- **Solve** using trig

REMEMBER: When using x and y components...

 $\underline{\text{Ex.}}$ An airplane heading at 450 km/h, 30° north of east encounters a 75 km/h wind blowing towards a direction 50° west of north. What is the resultant velocity of the airplane relative to the ground?

Airplane vector: x-com	ponent:	Wind vector: x-component:
y-com	ponent:	y-component:
Adding the two vectors: x-components of resultant:	Total resulta	ant:
y-components of resultant:		

Vector Subtraction

With vectors a negative sign indicates that...

When subtracting vectors we still draw them tip to tail, except...

We generally subtract vectors when dealing with a ______ in a vector quantity.

Recall:

Change =

<u>Ex</u>: A cyclist is traveling at 14 m/s west when he turns due north and continues at 10 m/s. If it takes him 4.0 s to complete the turn what is the magnitude and direction of his acceleration?