\qquad Date: \qquad
Block: \qquad

Uncertainty

(Giancoli 1.4)

Uncertainty:	8.8 cm has an estimated uncertainty of 0.1 cm in the measurement (one of the smallest fraction of the unit.) $8.8 \pm 0.1 \mathrm{~cm}$
Percent Uncertainty:	: The ratio of the uncertainty to the measured value.
	$\frac{0.1}{8.8} X 100 \% \approx \mathbf{1 \%}$
	$8.8 \mathrm{~cm} \pm 1 \%$

Calculations with Percent Uncertainty:

To make calculations with uncertainty, you calculate first using the specified value, and second with the extreme value.

Ex: What is the area A of a circle of radius 12 m ? What is the approximate uncertainty on the calculated area?

1. Area (Specified): $\quad A_{\text {Specified }}=\pi r^{2}=\pi(12 \mathrm{~m})^{2}=452 \mathrm{~m}^{2}$
2. Uncertainty: $\quad 12 \pm \mathbf{1} \mathrm{m}$ (can be as low as 11 m or as high as 13 m)
3. Area (Max):

$$
A_{\max }=\pi r^{2}=\pi(13 m)^{2}=531 m^{2}
$$

4. Uncertainty on area: $\Delta A=A_{\max }-A_{\text {Specified }}$

$$
=531 \mathrm{~m}^{2}-452 \mathrm{~m}^{2}=79 \mathrm{~m}^{2}
$$

5. Percent Uncertainty: $\quad \frac{\Delta A}{A_{\text {Specified }}} X 100 \%=\frac{79 m^{2}}{452 m^{2}} X 100 \%=\mathbf{1 7 \%}$

Your answer (area or the circle): $\quad 452 \mathbf{m}^{2} \pm \mathbf{1 7 \%}$

1. Write the following measurements with their uncertainty (Ex: $6.4 \pm 0.1 \mathbf{c m}$).
a) 1.67 m
b) 145 g
c) 12.004 kg
d) 1030 km
2. Write the following measurements with their percent uncertainty. Round the

a) 1.67 m
b) $155 \pm 5 \mathrm{~g}$
c) $2000 \pm 100 \mathrm{~km}$
d) $100.0 \mathrm{~kg} \pm 0.1 \mathrm{~kg}$
3. Calculate the area, and the percent uncertainty, of a circle of radius $1.3 \mathrm{X} 10^{2} \mathrm{~cm}$?
\qquad $\left(53092 \mathrm{~cm}^{2} \pm 16 \%\right)$
4. Calculate the volume, and the percent uncertainty, of a spherical beach ball whose radius is $\mathrm{r}=3.86 \pm 0.08 \mathrm{~m}$?
