Math 10 - Unit 1 - Lesson 5 - Relating SI (metric) and Imperial Units Measurement Unit

For this lesson, you will need: a ruler / measuring tape with metric and imperial units, string, calipers, and 2 objects to measure.

Try this! Using a ruler, estimate the length of 1 in . to the nearest tenth of a centimetre, and estimate the length of 1 cm to the nearest fraction of an inch.

$$
1 \mathrm{~cm} \cong \frac{13}{32}=0.4 \mathrm{in} .
$$

$1 \mathrm{in} \cong 2.5 \mathrm{~cm}$

Convert it!

1. 18 m to ft

$18 \mathrm{~m} \times \frac{1 f t .}{0.3048 \mathrm{~m}}$

 $=59.1 \mathrm{ft}$$=59 \frac{1}{10} \mathrm{ft}$
2. 50 ft to m

$$
\begin{aligned}
& 50 \mathrm{ft} . \times \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}} \\
& =15.24 \mathrm{~m}
\end{aligned}
$$

3. 70 km to mi .
$70 \mathrm{~km} \times \frac{1 \mathrm{mi}}{1.609 \mathrm{~km}}$

$$
\begin{aligned}
& =43.5 \mathrm{mi} \\
& =43 \frac{5}{10} \mathrm{mi}=43 \frac{1}{2} \mathrm{mi}
\end{aligned}
$$

5. 212 cm to ft

$$
\begin{aligned}
& 212 \mathrm{~cm} \times \frac{1 \mathrm{in.}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft} .}{12 \mathrm{in} .} \\
& =7 \mathrm{ft}
\end{aligned}
$$

4. 20 mi . to km

5. 650 yd . to km

$$
\begin{aligned}
& 650 y \mathrm{~d} \times \frac{0.9144 \mathrm{~m}}{1 \mathrm{yd}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \\
& =0.59 \mathrm{~km}
\end{aligned}
$$

Solve it!

Sandeep is 5 ft .4 in . tall. To list her height on her driver's license application, Sandeep needs to convert this measurement to centimetres.
a. What is Sandeep's height to the nearest centimetre?
b. Use mental math and estimation to justify that the answer is reasonable.

$$
\begin{array}{ll}
& 5 \mathrm{ft} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}}=60 \mathrm{in} \\
& \text { height in in. }=60+4=64 \mathrm{in} . \\
& 64 \mathrm{in} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{in} .}=163 \\
\therefore \text { Sandeep's height is } & \rightarrow 1 \mathrm{ft} \text {. is approx } 30 \mathrm{~cm} \text { (look e yow) } \\
\text { ruler!, } \\
\text { Page } 1 \text { approx. } 163 \mathrm{~cm} .
\end{array} \quad \rightarrow 5 \mathrm{ft} \approx 5 \times 30 \mathrm{~cm}=150 \mathrm{~cm} \text {. } \quad \rightarrow 163 \mathrm{~cm} \text { is reasonable. }
$$

Math 10 - Unit 1 - Lesson 5 - Relating SI (metric) and Imperial Units

Measuring with Vernier Calipers

Vernier calipers are used to make very precise measurements. They have a main scale, showing to the nearest millimetre like most rulers, but also a Vernier scale that offers an even more precise measurement. (In case you were wondering where the Vernier comes from, they were invented by Pierre Vernier in 1631!)

Outside jaws

Measurement Devices:

- Outside jaws: used to measure
the outer dimensions of objects
Ex: the outer diameter of a pipe
- Inside jaws: used to measure the inner dimensions of objects
Ex: the inner diameter of a pipe
- Stem/depth gauge: Used to measure
the depth of objects
ε_{x} : the depth of a small
container.

Measurement Scales:

- Fixed scale
metric: divided into
- does not move!
- looks like aruler
- Moving (Vernier) scale metric: divided
into $\frac{1}{100} \mathrm{~cm}$
are accurate to the nevers

Example: Read the following measurement made in metric units with Vernier calipers.

Math 10 - Unit 1 - Lesson 5 - Relating SI (metric) and Imperial Units

Measurement Unit
Name: \qquad

Solution

First line on the moving scale reads the fixed scale of 2.0

Best aligns on moving scale at 0.05

First read the fixed scale, using the first line on the moving scale as a pointer. This line points to a place beyond 2.0 cm .
Now find the line on the moving scale that most closely aligns with a line on the fixed scale. The moving scale has 10 divisions, and each division represents 0.01 cm . The line that best matches is the fifth line on the moving scale; that is 0.05 cm .

Therefore the reading of the caliper is:
$2.0+0.05=2.05 \mathrm{~cm}$

Example \#2: Read the following Vernier caliper calibrated in metric units.

Math 10 - Unit 1 - Lesson 5 - Relating SI (Metric) and Imperial Units

Measurement Unit
Name:

ACTIVITY: Measuring with Vernier Calipers

Instructions: (repeat the following steps for two different objects)

1. Sketch the object.
2. Use a referent to estimate all possible linear measures of the object in imperial units and then again in SI (metric) units. Record these estimates on the sketch. Think height, perimeter, inner diameter and outer diameter.
3. Choose appropriate measuring instruments in both imperial units and SI units to measure the object in as many ways as you can. Record the measurements on the sketch. Make sure you use the Vernier calipers when you can! Think about what you might use the string for...

OBJECT \#1

OBJECT \#2

