\qquad
\qquad
\qquad

Math 10 - Unit 1 Review - Measurement

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Convert 56 m to centimetres.
a. $\quad 5600 \mathrm{~cm}$
b. $\quad 0.00056 \mathrm{~cm}$
c. 0.56 cm
d. 560 cm
2. Convert 900 cm to millimetres.
a. $\quad 0.0009 \mathrm{~mm}$
b. $\quad 90 \mathrm{~mm}$
c. $\quad 0.9 \mathrm{~mm}$
d. $\quad 9000 \mathrm{~mm}$
3. What is the surface area of this cube?

a. $\quad 96 \mathrm{~cm}^{2}$
b. $64 \mathrm{~cm}^{2}$
c. $24 \mathrm{~cm}^{2}$
d. $32 \mathrm{~cm}^{2}$
4. Calculate the surface area of this right triangular prism.

a. $\quad 600 \mathrm{~cm}^{2}$
b. $540 \mathrm{~cm}^{2}$
c. $732 \mathrm{~cm}^{2}$
d. $660 \mathrm{~cm}^{2}$
5. A right rectangular prism measures 11 cm by 5 cm by 5 cm .
What is its surface area?
a. $\quad 135 \mathrm{~cm}^{2}$
b. $270 \mathrm{~cm}^{2}$
c. $84 \mathrm{~cm}^{2}$
d. $275 \mathrm{~cm}^{2}$
6. Find the surface area of this cylinder.

Give your answer to the nearest tenth of a square metre.

a. $\quad 1809.6 \mathrm{~m}^{2}$
b. $\quad 628.3 \mathrm{~m}^{2}$
c. $\quad 653.5 \mathrm{~m}^{2}$
d. $\quad 854.5 \mathrm{~m}^{2}$
7. Find the surface area of this cylinder.

Give your answer to the nearest tenth of a square metre.

a. $\quad 1633.6 \mathrm{~m}^{2}$
b. $\quad 81.7 \mathrm{~m}^{2}$
c. $\quad 1118.4 \mathrm{~m}^{2}$
d. $\quad 1319.5 \mathrm{~m}^{2}$
8. Find the volume of this right rectangular prism.

a. $26 \mathrm{~m}^{3}$
b. $\quad 216 \mathrm{~m}^{3}$
c. $\quad 312 \mathrm{~m}^{3}$
d. $432 \mathrm{~m}^{3}$
9. Calculate the volume of this right triangular prism.

a. $\quad 936 \mathrm{~cm}^{3}$
b. $\quad 1440 \mathrm{~cm}^{3}$
c. $\quad 780 \mathrm{~cm}^{3}$
d. $720 \mathrm{~cm}^{3}$
10. Find the volume of this cylinder. Give your answer to the nearest cubic metre.

a. $\quad 85 \mathrm{~m}^{3}$
b. $\quad 198 \mathrm{~m}^{3}$
c. $254 \mathrm{~m}^{3}$
d. $\quad 47 \mathrm{~m}^{3}$
11. Find the volume of this cylinder.

Give your answer to the nearest cubic metre.

a. $\quad 6616 \mathrm{~m}^{3}$
b. $\quad 3308 \mathrm{~m}^{3}$
c. $\quad 1244 \mathrm{~m}^{3}$
d. $522 \mathrm{~m}^{3}$
12. Convert 100 in. to yards, feet, and inches.
a. 4 yd .2 ft .2 in .
b. 2 yd .2 ft .4 in .
c. 1 yd. 1 ft .4 in .
d. 4 yd .0 ft .4 in .
13. Convert 12565 ft . to miles, yards, and feet.
a. 6 mi .167 yd .1 ft .
b. 2 mi .55 yd .25 ft .
c. 2 mi .668 yd. 1 ft .
d. 6 mi .668 yd. 1 ft .
14. Nancy has 7 yd . of material. She wants to make curtains that are 18 in . wide. How many curtains can Nancy make?
a. 92
b. 14
c. 4
d. 1
15. A map of Alberta has a scale of $1: 1505000$. The distance on the map between Calgary and Red Deer is $3 \frac{1}{4}$ in. What is this distance to the nearest mile?
a. 232 mi .
b. $\quad 77 \mathrm{mi}$.
c. $\quad 308 \mathrm{mi}$.
d. 26 mi .
16. A map of British Columbia has a scale of $1: 1723$ 000. The distance on the map between Prince George and Cache Creek is $8 \frac{11}{16}$ in. What is this distance to the nearest mile?
a. $\quad 945 \mathrm{mi}$.
b. $\quad 79 \mathrm{mi}$.
c. $\quad 708 \mathrm{mi}$.
d. $\quad 236 \mathrm{mi}$.
17. Baseboards are sold in 8 -ft. lengths. Nelia requires 73 yd. of baseboard. How many 8 -ft. lengths does Nelia need to purchase?
a. 29
b. 28
c. 26
d. 27
18. A gardener recommends planting daffodil bulbs 9 in. apart. Peter follows the gardener's advice and plants daffodils along the entire length of his $18-\mathrm{ft}$. driveway. How many daffodil bulbs will Peter need?
a. 26
b. 24
c. 25
d. 72
19. Which referent could you use for 1 cm ?
a. The depth of a kitchen sink
b. The length of a public swimming pool
c. The width of your shortest finger
d. The length of a walking stick
20. Which referent could you use for 1 km ?
a. The distance equal to $2 \frac{1}{2}$ laps on an oval running track
b. The length of an iPod
c. The length of a snowboard
d. The length of your arm span
21. Which referent could you use for 1 mm ?
a. The width of the head of an ant
b. The diameter of a beach ball
c. The distance between British Columbia and Manitoba
d. The length of a sheet of loose-leaf paper
22. Which referent could you use for 1 in.?
a. The distance from where you are now to the nearest restaurant
b. The diameter of a bicycle wheel
c. The length of your calculator
d. The width of your largest toe
23. Which SI unit is most appropriate for measuring the length of a soccer field?
a. Metres
b. Millimetres
c. Kilometres
d. Centimetres
24. Which SI unit is most appropriate for measuring the distance between your school and the nearest airport?
a. Centimetres
b. Metres
c. Millimetres
d. Kilometres
25. Which SI unit is most appropriate for measuring the diameter of a marble?
a. Metres
b. Kilometres
c. Millimetres
d. Centimetres
26. Which imperial unit is most appropriate for measuring the distance between the nearest lake and the nearest mountain peak?
a. Feet
b. Inches
c. Miles
d. Yards
27. Which imperial unit is most appropriate for measuring the length of a ladder?
a. Feet
b. Yards
c. Miles
d. Inches
28. A penalty box on a soccer field measures 44 yd . by 18 yd . What are these dimensions to the nearest tenth of a metre?
a. $\quad 40.2 \mathrm{~m}$ by 16.5 m
b. $\quad 47.7 \mathrm{~m}$ by 16.5 m
c. 40.2 m by 17.6 m
d. $\quad 47.7 \mathrm{~m}$ by 17.6 m
29. On a road map of British Columbia, the distance between Vancouver and Fort St. John is 1237 km. What is this distance to the nearest mile?
a. $\quad 769 \mathrm{mi}$.
b. $\quad 673 \mathrm{mi}$.
c. $\quad 1979 \mathrm{mi}$.
d. $\quad 2061 \mathrm{mi}$.
30. Convert 3180 m to yards and the nearest foot.
a. $\quad 1060$ yd. 0 ft .
b. 2935 yd. 1 ft .
c. 3477 yd. 2 ft .
d. 815 yd .1 ft .
31. Convert 3000 yd . to the nearest tenth of a metre.
a. $\quad 2700.0 \mathrm{~m}$
b. $\quad 1875.0 \mathrm{~m}$
c. $\quad 2743.2 \mathrm{~m}$
d. $\quad 3333.3 \mathrm{~m}$
32. Convert 28 mi . to the nearest kilometre.
a. 38 km
b. $\quad 18 \mathrm{~km}$
c. 45 km
d. 50 km
33. The Queen's Plate is a thoroughbred horse race for 3-year-old Canadian-bred horses. The race is $1 \frac{1}{4}$ mi. in length. What is this distance in kilometres?
a. 2 km
b. $\quad 1.7 \mathrm{~km}$
c. $\quad 0.78 \mathrm{~km}$
d. $\quad 1.28 \mathrm{~km}$
34. The cliff at Head-Smashed-In Buffalo Jump in southwestern Alberta is about 10 m high. What is this height to the nearest foot?
a. $\quad 36 \mathrm{ft}$.
b. 35 ft .
c. 33 ft .
d. 30 ft .
35. A regular tetrahedron has edge length 20.0 m and a slant height of 17.3 m . Calculate the surface area of the tetrahedron to the nearest square metre.
a. $\quad 1384 \mathrm{~m}^{2}$
b. $\quad 173 \mathrm{~m}^{2}$
c. $\quad 519 \mathrm{~m}^{2}$
d. $692 \mathrm{~m}^{2}$
36. A right cone has a height of 15 in . and a base diameter of 8 in . Determine the lateral area of the cone to the nearest square inch.
a. 188 square inches
b. 195 square inches
c. 245 square inches
d. 214 square inches
37. In 2008, the Queen Sesheshet Pyramid was discovered in Egypt. Archeologists determined that the original height of this right square pyramid was about 14 m and the original base side length was about 22 m . Determine its original lateral area to the nearest square metre.
a. $\quad 1267 \mathrm{~m}^{2}$
b. $783 \mathrm{~m}^{2}$
c. $\quad 196 \mathrm{~m}^{2}$
d. $616 \mathrm{~m}^{2}$
38. A right rectangular pyramid has base dimensions 8 ft . by 6 ft . and a height of 12 ft . Calculate the surface area of the pyramid to the nearest square foot.
a. 223 square feet
b. 159 square feet
c. 271 square feet
d. 216 square feet
39. The surface area of a right cone is $400.2 \mathrm{~m}^{2}$. The radius of the cone is 6.0 m . Determine the height of the cone to the nearest metre.
a. 14 m
b. 16 m
c. $\quad 15 \mathrm{~m}$
d. $\quad 13 \mathrm{~m}$
40. Calculate the slant height, s, of this right square pyramid to the nearest tenth of a centimetre.

a. $\quad 11.9 \mathrm{~cm}$
b. $\quad 6.1 \mathrm{~cm}$
c. $\quad 12.1 \mathrm{~cm}$
d. $\quad 16.6 \mathrm{~cm}$
41. Calculate the edge length, l, of this regular tetrahedron to the nearest tenth of a metre.

a. $\quad 10.6 \mathrm{~m}$
b. $\quad 7.1 \mathrm{~m}$
c. $\quad 6.5 \mathrm{~m}$
d. 5.3 m
42. Calculate the volume of this right rectangular pyramid to the nearest cubic inch.

a. 216 cubic inches
b. 72 cubic inches
c. 64 cubic inches
d. 78 cubic inches
43. A regular tetrahedron has base area $146.4 \mathrm{~m}^{2}$ and height 10.7 m . Determine its volume to the nearest cubic metre.
a. $\quad 586 \mathrm{~m}^{3}$
b. $522 \mathrm{~m}^{3}$
c. $\quad 1566 \mathrm{~m}^{3}$
d. $3133 \mathrm{~m}^{3}$
44. A right rectangular prism with base dimensions 7.8 m by 5.1 m has a volume of $110.1 \mathrm{~m}^{3}$. Determine the height of the prism to the nearest tenth of a metre.
a. $\quad 2.8 \mathrm{~m}$
b. $\quad 8.3 \mathrm{~m}$
c. $\quad 1.2 \mathrm{~m}$
d. 5.5 m
45. A right rectangular pyramid has base dimensions 9 ft . by 5 ft ., and a height of 12 ft . Determine its volume to the nearest cubic foot.
a. 180 cubic feet
b. 237 cubic feet
c. 184 cubic feet
d. 192 cubic feet
46. A right cone has a height of 8 cm and a volume of $250 \mathrm{~cm}^{3}$. Determine the radius of the base of the cone to the nearest centimetre.
a. 3 cm
b. 11 cm
c. 17 cm
d. 5 cm
47. A right cone has slant height 15 in . and base diameter 12 in . Determine its volume to the nearest cubic inch.
a. 1555 cubic inches
b. 396 cubic inches
c. 518 cubic inches
d. 543 cubic inches
48. The volume of this right cone is $14.7 \mathrm{~mm}^{3}$.

Calculate its height, h, to the nearest tenth of a millimetre.

a. $\quad 4.1 \mathrm{~mm}$
b. $\quad 1.0 \mathrm{~mm}$
c. $\quad 1.4 \mathrm{~mm}$
d. $\quad 2.8 \mathrm{~mm}$
49. The surface area of a tennis ball is approximately 23 square inches. What is the diameter of the tennis ball to the nearest inch?
a. 3 in.
b. 1 in.
c. 4 in.
d. 6 in.
50. A ten-pin bowling ball has a radius of approximately $4 \frac{1}{4}$ in. Determine the surface area of the ball to the nearest square inch.
a. 57 square inches
b. 322 square inches
c. 908 square inches
d. 227 square inches
51. A ten-pin bowling ball has a radius of approximately $4 \frac{1}{4}$ in. Determine the volume of the ball to the nearest cubic inch.
a. 322 cubic inches
b. 5642 cubic inches
c. 227 cubic inches
d. 2572 cubic inches
52. A garden shed is a composite object formed by a right rectangular prism with a right triangular prism as its roof. Determine the surface area of the garden shed to the nearest square foot.

a. 366 square feet
b. 554 square feet
c. 434 square feet
d. 464 square feet
53. A barn is a composite object formed by a right rectangular prism with a right triangular prism as its roof. The square window on the barn has side length 2 ft . Farmer Fred wants to paint the entire surface of his barn, including the door, but not the window. Determine the surface area to be painted to the nearest square foot.

a. 666 square feet
b. 460 square feet
c. 662 square feet
d. 614 square feet
54. Determine the volume of this composite object, which is a right cylinder and two right cones, to the nearest cubic centimetre.

a. $\quad 37 \mathrm{~cm}^{3}$
b. $16 \mathrm{~cm}^{3}$
c. $14 \mathrm{~cm}^{3}$
d. $47 \mathrm{~cm}^{3}$

Short Answer

55. Convert 5 yd. 6 in. to inches.
56. Convert 112 in. to feet and inches.
57. A regular tetrahedron with edge length 12.7 mm has a surface area of $229.0 \mathrm{~mm}^{2}$. Determine the slant height of the tetrahedron to the nearest millimetre.
58. Determine the surface area of this sphere to the nearest square centimetre. Determine its volume to the nearest cubic centimetre.

59. A hemisphere has radius 7 ft . Determine the surface area of the hemisphere to the nearest square foot.
60. A hemisphere has radius 12 m . Determine the volume of the hemisphere to the nearest tenth of a cubic metre.
61. A spherical balloon has a surface area of $88 \mathrm{~cm}^{2}$. What is the diameter of the balloon to the nearest tenth of a centimetre?
62. Determine the surface area of this composite object, which is a right triangular prism and a right cylinder, to the nearest square inch.

63. A slab of chocolate is a rectangular prism with dimensions 24 cm by 60 cm by 3 cm .
a) What is the volume of the chocolate slab?
b) The chocolate is shared equally among 36 students.
How much chocolate does each student receive?
64. A map of B.C. has a scale of $1: 2500000$. The actual distance between Nanaimo and Campbell River is approximately 96 mi . What is this distance on the map? Answer to the nearest sixteenth of an inch.
65. Sheila plans to place crown moulding along the top of each wall in her family room. A total of 554 in. of moulding is required. The moulding costs $\$ 1.59 / \mathrm{ft}$. and is sold in $8-\mathrm{ft}$. lengths. What is the cost of the crown moulding, before taxes?
66. A right square pyramid has a height of 7.5 m and a base perimeter of 36 m . Calculate the surface area of the pyramid to the nearest square metre.
67. A baby's rattle contains a plastic ball inside a spherical case. The diameter of the plastic ball is 2 cm and the diameter of the case is 7 cm .

a) Calculate the volume of the spherical case, to the nearest cubic centimetre.
b) Calculate the volume of the plastic ball, to the nearest cubic centimetre.
c) Calculate the volume of air in the rattle, to the nearest cubic centimetre.

Math 10 - Unit 1 Review - Measurement

Answer Section

MULTIPLE CHOICE

1. A
2. D
3. A
4. A
5. B
6. D
7. A
8. B
9. D
10. C
11. B
12. B
13. C
14. B
15. B
16. D
17. B
18. B
19. C
20. A
21. A
22. D
23. A
24. D
25. C
26. C
27. A
28. A
29. A
30. C
31. C
32. C
33. A
34. C
35. D
36. B
37. B
38. A
39. A
40. C
41. D
42. B
43. B
44. A
45. A
46. D
47. C
48. A
49. A
50. D
51. A
52. C
53. C
54. B

SHORT ANSWER

55. 186 in .
56. 9 ft .4 in .
57. 9 mm
58. $S A=1134 \mathrm{~cm}^{2}$
$V=3591 \mathrm{~cm}^{3}$
59. 462 square feet
60. $3619.1 \mathrm{~m}^{3}$
61. 5.3 cm
62. 694 square inches
63. a) The volume of the chocolate slab is $4320 \mathrm{~cm}^{3}$.
b) Each student receives $120 \mathrm{~cm}^{3}$ of chocolate.
64.

The distance on the map between Nanaimo and Campbell River is approximately $2 \frac{7}{16} \mathrm{in}$.
65. The number of $8-\mathrm{ft}$. lengths is greater than 5 , so Sheila must buy 6 lengths.

The total number of feet in 6 lengths is: $6(8 \mathrm{ft})=.48 \mathrm{ft}$.
Before taxes, the crown moulding will cost $\$ 76.32$.
66.

The surface area of the pyramid is approximately $238 \mathrm{~m}^{2}$.
67. a) The volume of the spherical case is approximately $180 \mathrm{~cm}^{3}$.
b) The volume of the plastic ball is approximately $4 \mathrm{~cm}^{3}$.
c) The volume of air in the rattle is: $179.5943 \ldots \mathrm{~cm}^{3}-4.1887 \ldots \mathrm{~cm}^{3}=175.4055 \ldots \mathrm{~cm}^{3}$ The volume of air in the rattle is approximately $175 \mathrm{~cm}^{3}$.

