MATH 10 - UNIT 7 - LESSON 6 - EQUATION OF A LINE IN GENERAL FORM

CO-ORDINATE GEOMETRY UNIT

Try it! Rewrite the following equations in general form.

1.
$$y = -\frac{2}{3}x - 4$$

 $3y = 3\left(-\frac{2}{3}x - 4\right)$
 $3y = -2x - 12$
 $2x + 3y + 12 = 0$
Page 1
2. $y + 2 = \frac{2}{5}(x - 2)$
 $5\left(y + 2\right) = -5 \times \frac{2}{5}(x - 2)$
 $5y + 10 = 2(x - 2)$
 $5y + 10 = 2x - 2$
 $5y + 10 = 2x - 4$
 $0 = 2x - 5y - 4 - 10$
 $2x - 5y - 14 = 0$

MATH 10 - UNIT 7 - LESSON 6 - EQUATION OF A LINE IN GENERAL FORM

CO-ORDINATE GEOMETRY UNIT

Name: Block: Date: _____

Graphing a Line in General Form

Find the *x*-intercept by setting y = 0. Find the *y*-intercept by setting x = 0. You have two points, so you can graph your line!

Example: Graph the following lines.

MATH 10 - UNIT 7 - LESSON 6 - EQUATION OF A LINE IN GENERAL FORM

CO-ORDINATE GEOMETRY UNIT

Name: _____ Block: ____ Date: _____

Finding the Slope of the Line

To find the slope of a line written in general form, rewrite the equation in slope-intercept form. Put into y=math form, (solve fory) Example: Determine the slope of the following lines.

Example: Determine the slope of
1.
$$2x - 3y - 3 = 0$$

 $\frac{2z - 3}{3} = \frac{3}{3} \frac{4}{3}$
 $\frac{2}{3} - 1 = \frac{2}{3} \frac{2}{3} - 1$
 $\frac{2}{3} = \frac{2}{3} \frac{2}{3} - 1$
 $\frac{2}{3} = \frac{2}{3} \frac{2}{3} - 1$
 $\frac{2}{3} = \frac{2}{3} \frac{2}{3} - 1$

2.
$$4x + 2y - 5 = 0$$

$$\frac{2y}{2} = -4x + 5$$

$$\frac{2}{2}$$

$$\frac{y}{2} = -2x + \frac{5}{2}$$

$$\therefore \text{ the slope is } -2$$

Try it! Determine the slope of the following lines. 1. 3x - 2y + 8 = 0

2. 5x + 3y - 9 = 0

$$\frac{3y}{3} = -\frac{5x+9}{3}$$

$$\frac{3y}{3} = -\frac{5}{3}x+3$$

... the slope is $-\frac{5}{3}$

Lesson 6 Homework: WS 10-7-6 "Equation of a Line in General Form"

Page 3