Unit 1: Vectors

Multiple Choice Portion

1. A boat which can travel at a speed of $7.9 \mathrm{~m} / \mathrm{s}$ in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at $3.2 \mathrm{~m} / \mathrm{s}$. What is the resulting speed of the boat relative to point X ?

a. $\quad 11.1 \mathrm{~m} / \mathrm{s}$
b. $\quad 8.5 \mathrm{~m} / \mathrm{s}$
c. $\quad 7.2 \mathrm{~m} / \mathrm{s}$
d. $\quad 4.7 \mathrm{~m} / \mathrm{s}$
2. If a car travels due west for 5.0 km and then directly north for 6.0 km , how far, along a straight line is the car from its starting position?
a. $\quad 1.0 \mathrm{~km}$
b. $\quad 3.3 \mathrm{~km}$
c. $\quad 7.8 \mathrm{~km}$
d. 11 km
3. A plane heads north with an airspeed of $420 \mathrm{~km} / \mathrm{h}$. However; relative to the ground, it travels in a direction of 7.0° west of north. If the wind's direction is towards the northwest (45.0° west of north), what is the wind's speed?
a. $51 \mathrm{~km} / \mathrm{h}$
b. $\quad 65 \mathrm{~km} / \mathrm{h}$
c. $\quad 72 \mathrm{~km} / \mathrm{h}$
d. $83 \mathrm{~km} / \mathrm{h}$

4. A motorboat at point X must cross a river flowing as shown in the above diagram. If the boat travels fixed speed relative to the water, in which direction should the boat head in order to reach the other side in the least amount of time?
a. 1
b. 2
c. 3
d. 4
5. If a person travels 12.5 m north and then 7.8 m east, what is the magnitude of his displacement from the starting point?
a. $\quad 4.7 \mathrm{~m}$
b. $\quad 9.8 \mathrm{~m}$
c. $\quad 14.7 \mathrm{~m}$
d. $\quad 20.3 \mathrm{~m}$
6. If a skier coast down a slope at an angle of 24° below the horizontal, what is her acceleration if the force of friction is negligible?
a. $\quad 24 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 9.0 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 4.4 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad 4.0 \mathrm{~m} / \mathrm{s}^{2}$
7. An airplane with an airspeed of $420 \mathrm{~km} / \mathrm{h}$ is heading due north. If there is a wind blowing due east with a speed of $120 \mathrm{~km} / \mathrm{h}$, what is the direction of the plane relative to the ground?
a. 16° east of north
b. 16° east of south
c. 74° east of north
d. 74° east of south
8. A football player is tackled; he is acted upon by three horizontal forces: 145 N north, 96 N south and 64 N east. What is the magnitude of the equilibrant of these three forces?
a. $\quad 113 \mathrm{~N}$
b. $\quad 185 \mathrm{~N}$
c. $\quad 81 \mathrm{~N}$
d. 15 N

9. A rope pulls horizontally on a 2.50 kg pendulum bob and holds the pendulum at an angle of 30.0° from the vertical as shown in the diagram above. What is the tension in the pendulum cord?
a. $\quad 14.1 \mathrm{~N}$
b. $\quad 21.2 \mathrm{~N}$
c. $\quad 28.3 \mathrm{~N}$
d. $\quad 49.0 \mathrm{~N}$

Physics 12: Unit 1 Questions.doc
10. Which of the following is property of all vector quantities?
a. time
b. energy
c. distance
d. direction

11. In the above diagram, the boat has a speed of $4.5 \mathrm{~m} / \mathrm{s}$ in still water. How long will it take the boat to reach the N / S longitudinal line?
a. 440 s
b. 540 s
c. 630 s
d. 770 s
12. A man move from W to X to Y to Z as shown in the diagram below. What is the magnitude of his final displacement from W?

a. $\quad 2.0 \mathrm{~m}$
b. 8.6 m
c. $\quad 12 \mathrm{~m}$
d. $\quad 9.0 \mathrm{~m}$
13. A car travels 10.0 km due east and then 12.0 km in a direction 45° north of west. What is the magnitude of the car's displacement?
a. $\quad 6.6 \mathrm{~km}$
b. 8.6 km
c. $\quad 15.6 \mathrm{~km}$
d. $\quad 22.0 \mathrm{~km}$
14. A car changes its velocity from $55 \mathrm{~km} / \mathrm{h}$ due north to $55 \mathrm{~km} / \mathrm{h}$ due east. What is the direction of the change in its velocity
a. 45° north of east
b. 45° north of west
c. 45° south of east
d. 45° south of west
15. Two forces act on an object: 125 N due west and 79 N due north. In what direction must the third force act on the object to keep it in equilibrium?
a. 32° north of west
b. 32° south of east
c. 58° north of west
d. 58° south of east

16. The above diagram show a canal boat being held stationary by two ropes anchored at P and Q . For which of the following values of θ will the force of tension in the ropes be least?
a. 30°
b. 45°
c. 60°
d. 90°

17. A picture on which the force of gravity is 170 N is supported by a wire, as shown in the diagram above. What is the magnitude of the force of tension in the wire?
a. 85 N
b. $\quad 92 \mathrm{~N}$
c. $\quad 1.7 \times 10^{2} \mathrm{~N}$
d. $\quad 2.3 \times 10^{2} \mathrm{~N}$
18. Which one of the following statements best describes vectors?
a. all vectors have direction only
b. all vectors have magnitude only
c. all vectors have both magnitude and direction
d. all vectors are directed towards the earth's centre

Physics 12: Unit 1 Questions.doc
19. An aircraft heading north at $48 \mathrm{~m} / \mathrm{s}$ encounters a wind blowing towards the east at $27 \mathrm{~m} / \mathrm{s}$. What is the aircraft's resultant direction of travel?
a. $\quad 29^{\circ} \mathrm{E}$ of N
b. $\quad 34^{\circ} \mathrm{E}$ of N
c. $\quad 56^{\circ} \mathrm{E}$ of N
d. $\quad 61^{\circ} \mathrm{E}$ of N
20. A vehicle, travelling north at $9.0 \mathrm{~m} / \mathrm{s}$ changes its velocity to $12 \mathrm{~m} / \mathrm{s}$ east. Which one of the following best represents its change in velocity?
a.

c.

b.

d.

21. As shown in the diagram below, the river flows eastward at $3.3 \mathrm{~m} / \mathrm{s}$. A boat can travel at $4.38 \mathrm{~m} / \mathrm{s}$ relative to still water.

If the boat departs from position X heading due north, in what direction will this boat travel relative to position X ?
a. due north
b. $35^{\circ} \mathrm{E}$ of N
c. $43^{\circ} \mathrm{E}$ of N
d. $\quad 47^{\circ} \mathrm{E}$ of N
22. Which one of the following contains two vector quantities?
a. mass, velocity
b. time, momentum
c. force, acceleration
d. speed, displacement
23. The diagram below shows two forces vectors F_{1} and F_{2} acting on an object at point P What is the magnitude of the resultant force? (Each grid space equal 1 Newton)
a. $\quad 3.0 \mathrm{~N}$
b. $\quad 5.0 \mathrm{~N}$
c. $\quad 7.0 \mathrm{~N}$
d. $\quad 14.3 \mathrm{~N}$

24. A boat departs from point P heading towards point X as shown in the diagram below. Its speed relative to the water is $2.50 \mathrm{~m} / \mathrm{s}$. The river is flowing south at $1.40 \mathrm{~m} / \mathrm{s}$ so that the boat actually touches the east bank at point Q

West Bank

If Q is 115 m downstream from point X , how wide is the river?
a. $\quad 40.0 \mathrm{~m}$
b. $\quad 82.0 \mathrm{~m}$
c. $\quad 2.05 \times 10^{2} \mathrm{~m}$
d. $2.35 \times 10^{2} \mathrm{~m}$
25. A projectile is fired with an initial velocity of $80 \mathrm{~m} / \mathrm{s}$ at an angle of 37° above the horizontal. If air resistance is negligible, how much time elapses before the projectile reaches it maximum height?
a. $\quad 4.9 \mathrm{~s}$
b. 6.5 s
c. $\quad 8.2 \mathrm{~s}$
d. 16 s

Physics 12: Unit 1 Questions.doc
26. A projectile is fired with an initial velocity of $120 \mathrm{~m} / \mathrm{s}$ at an angle 30° above the horizontal. If air resistance is negligible, how much time elapses before the projectile strikes the ground at the same elevation from which it was fired?
a. 6.1 s
b. 11 s
c. 12 s
d. 21 s

Use the following graph to answer the question below (each division represents 1.0 N)

27. The above diagram shows three force vectors acting on one point. What is the magnitude of the sum of these force vectors?
a. $\quad 1.6 \mathrm{~N}$
b. $\quad 2.2 \mathrm{~N}$
c. $\quad 17 \mathrm{~N}$
d. 20 N
28. Which one of the following is not a vector quantity?
a. work
b. impulse
c. velocity
d. displacement
29. Which one of the following is correct for a projectile motion, assuming no air friction?

Horizontal Speed Vertical Acceleration

a. constant
constant
b. constant
changing
c. changing
constant
d. changing changing
30. A rock is falling from building. While the rock is falling, which one of the following remains constant?
a. speed
b. velocity
c. momentum
d. acceleration
31. Which one of the following is vector quantity?
a. time
b. speed
c. impulse
d. kinetic energy
32. A projectile is fired from a cliff as shown in the

Which one of the following graphs best represents the total energy as a function of time for the projectile while it is in flight? (Ignore friction)

a.

b.

Time
c.

d.

Physics 12: Unit 1 Questions.doc
33. A projectile is launched with a velocity of $23 \mathrm{~m} / \mathrm{s}$ at 57 ${ }^{\circ}$ above the horizontal. What is the maximum height reached by the projectile?
a. 8.0 m
b. 19 m
c. 27 m
d. 64 m
34. The diagram below shows the path of a projectile over level ground.

Ground

Which one the following above arrows best represents the direction of the net force on the projectile at point
P?
a. zero (no arrow)
b. vertical (arrow Y)
c. horizontal (arrow X)
d. tangent to the curve (arrow Z)

Written Portion

1. A ball travelling horizontally at $4.0 \mathrm{~m} / \mathrm{s}$ rolls off a 30.0 m cliff. What will be its velocity (magnitude and direction) as it reaches the ground?

2. A rocket accelerates at $15 \mathrm{~m} / \mathrm{s}^{2}$ from rest for 21 m on a frictionless horizontal surface. The rocket stops firing at the cliff and falls freely from height of 45 m . Calculate R

3. A golf ball travels a $1.5 \mathrm{~m} / \mathrm{s}$ due east for 3.0 s and then travels at $2.0 \mathrm{~m} / \mathrm{s}$ in a direction of 25° north of west for 2.0 s . What is the magnitude of the balls average velocity for the entire 5.0 s ?
4. A 1.50 kg projectile is launched at $18.0 \mathrm{~m} / \mathrm{s}$ from level ground. The launch angle is 26.0° above the horizontal. (Assume negligible friction.)
a. What is the maximum height reached by this projectile?
b. How fast will the projectile be travelling when it is at its maximum height?
5. A projectile is launched over level ground at $35 \mathrm{~m} / \mathrm{s}$ at an angle of 24° above the horizontal (Friction is negligible.)
a. What is the time of flight of this projectile?
b. What is the velocity (magnitude and direction) of this projectile 2.5 s after launch?
6. A boat which can travel at $5.6 \mathrm{~m} / \mathrm{s}$ in still water heads due east across a river from a dock at \mathbf{X}. The boat's resultant path is 32° south of east.

a. What is the speed of the current?
b. How long will it take the boat to reach the far shore if the river is 185 m wide?
7. A soccer ball is kicked over level ground with an initial velocity of $18 \mathrm{~m} / \mathrm{s}, 24^{\circ}$ above the horizontal.
a. How long does it take the ball to return to the ground?
b. What is the range of the ball?

Physics 12: Unit 1 Questions.doc
8. Mike runs horizontally off a cliff at 6.5 m s and lands in the water 15 m from the base of the cliff.

$$
v=6.5 \mathrm{~m} / \mathrm{s}
$$

a. How long does it take Mike to hit the water?
b. How high is the cliff?
9. A projectile is launched over level ground at $85 \mathrm{~m} / \mathrm{s}, 25^{\circ}$ above the horizontal. Air resistance may be ignored.
a. Calculate the range (horizontal distance) of the projectile.
b. Using principles of physics, comment on the horizontal and vertical components of the projectile's velocity and acceleration during the flight.

Answers:
MC

1. b	11. b	21. b	31. d
2. c	12. a	22. c	32. a
3. d	13. b	23. b	33. b
4. b	14. c	24. c	34. b
5. c	15. b	25. a	
6. d	16. a	26. c	
7. a	17. d	27. b	
8. c	18. c	28. b	
9. c	19. a	29. a	
10. d	20. d	30. d	

Written

1. velocity $=24.6 \mathrm{~m} / \mathrm{s}, 81^{\circ}$ below the horizontal
2. $\mathrm{R}=75 \mathrm{~m}$
3. velocity $=0.38 \mathrm{~m} / \mathrm{s}$

4a. height $=3.18 \mathrm{~m}$
b. velocity $=16.2 \mathrm{~m} / \mathrm{s}$

5 a. time $=2.9 \mathrm{~s}$
b. velocity $=34 \mathrm{~m} / \mathrm{s} 18^{\circ}$ below the horizontal

6a. velocity $=3.5 \mathrm{~m} / \mathrm{s}$
b. time $=33 \mathrm{~s}$

7 a. time $=1.49 \mathrm{~s}$
b. range $=25 \mathrm{~m}$

8 a. time $=2.3 \mathrm{~s}$
b. height $=26 \mathrm{~m}$

9 a. range $=5.6 \times 10^{2} \mathrm{~m}$
b. $v_{\mathrm{h}}=$ constant; $v_{\mathrm{v}}=$ constantly changing; $a_{\mathrm{h}}=0 \mathrm{~m} / \mathrm{s}^{2} ; a_{\mathrm{v}}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

