Unit 1 – Worksheet Answer Key

Worksheet 1.1

1) 5.33x10^5 m
2) a. 0.28 m/s b. 14 m/s c. 22 m/s d. 28 m/s
3) a. 38 m/s b. 47 m/s c. 120 m
4) a. i. 50 m/s^2 ii. -10 m/s^2 iii. 50 m/s^2 b. B, since v = 0 c. Area under curve from A → B: 22m
5) a. d_{total} = 47.4 m → so OK! b. d_{total} = 60.2 m → Mooseburgers!
6) 3 m/s^2
7) 13.3 m/s
8) 69.6 m/s
9) 4.0 m/s^2
10) 2.29 s
11) Yes, after 8 s the passenger is 64 m from station, and train is 62 m. Therefore they meet.
12) a. a = slope = 0.67m/s^2 b. \(y = 0.67x - 5 \) c. 69 m d. 39 m
13) A: 0 m/s^2 B: -2m/s^2 C: 0 m/s^2 D: 2.5 m/s^2 E: -2 m/s^2

Worksheet 1.2

1) Don’t do!

2) a) Plot a straight line graph of \(d \) vs. \(t^2 \). (2 marks)

![Graph of d vs. t^2]

b) From your straight line graph, determine the slope of the line. (Include units.) (1 mark)

\[
\text{slope} = \frac{\Delta d}{\Delta t^2} = 0.28 \text{ m/s}^2
\]

(Allocate one mark for 0.28 m/s^2 only.)

c) What is the acceleration due to gravity on the surface of this asteroid? (2 marks)

\[
\begin{align*}
\frac{r^2}{2} &= \frac{1}{2}a^2 \\
\frac{r^2}{2} &= (0.28 \text{ m/s}^2)^2 \\
\frac{r^2}{2} &= 0.28 \text{ m/s}^2 \\
a &= 0.56 \text{ m/s}^2
\end{align*}
\]

(Allocate one mark for 0.28 m/s^2 only.)

3) Plot the data on the graph below and draw a line of best fit. Extend the line back to the ‘y’ axis so that you have a y-intercept point and determine the slope of the line.

![Graph of F vs. a]

b) Using your slope value and your y-intercept value from the graph, determine the coefficient of friction between the block and the floor.

\[
F - F_g = ma \\
F = ma + F_g
\]

\(y \)-intercept = \(F_g = 17.5 \) N

slope = \(max = 9.1 \text{ kg} \)

\(17.5 = \mu mg \)

\(17.5 = \mu (9.1) 9.1 \) N

\(\mu = 0.20 \) ← 1 mark

(1 mark)
5. (5 marks)

A student measures the final speed of an accelerating car at various displacements. The data obtained is shown below.

<table>
<thead>
<tr>
<th>FINAL SPEED (m/s)</th>
<th>v^2 (m²/s²)</th>
<th>DISPLACEMENT (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>44.8</td>
<td>2.0</td>
</tr>
<tr>
<td>6.7</td>
<td>42.4</td>
<td>4.0</td>
</tr>
<tr>
<td>7.2</td>
<td>51.8</td>
<td>6.0</td>
</tr>
<tr>
<td>7.9</td>
<td>62.4</td>
<td>8.0</td>
</tr>
<tr>
<td>8.4</td>
<td>76.6</td>
<td>10.0</td>
</tr>
<tr>
<td>9.9</td>
<td>81.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

For a graph of the final speed squared, v^2, versus the displacement, d, of the car on the graph below.

Determine the slope of the line of best fit to the data and state what the slope represents. Extend the line to the y-axis and use the y-intercept to determine the initial speed of the car.

Slope calculation:

$$m = \frac{\Delta v^2}{\Delta d}$$

$$= \frac{81 - 42}{12 - 4}$$

$$= \frac{4.9}{2}$$

Slope = $2 \times$ acceleration of the car ← 2 marks

y-intercept $= 24$ m²/s²

$\therefore v_0 = \sqrt{24} = 4.9$ m/s ← 1 mark

Worksheet 1.3

1) 0.39 2) 0.42 3) 0.90 4) 13° 5) 74° 6) 27°

1) $x = 63; \ y = 30.2 \ x = 14; \ y = 39 \ 3) \ R = 7.6; \ \theta = 23^\circ \ 4) \ R = 56; \ \theta = 53^\circ \ 5) \ \theta_1 = 4.47; \ R_x = 3.16 \ 6) \ \text{Resultant} = 10.0$

1) $R_x = 1.7 \ \text{cm}; \ R_y = 9.8 \ \text{cm} \ 2) \ R_x = 3.4 \ \text{cm}; \ R_y = 9.4 \ \text{cm} \ 3) \ R_x = 5.0 \ \text{cm}; \ R_y = 8.7 \ \text{cm} \ 4) \ R_x = 7.1 \ \text{cm}; \ R_y = 7.1 \ \text{cm} \ 5) \ \text{Resultant} = 10.0$

Worksheet 1.3

1) A → B → C

2) $Ax = 5.17 \ \text{cm}; \ Ay = 1.88 \ \text{cm}; \ Bx = -1.69 \ \text{cm}; \ By = 0.62 \ \text{cm}; \ Cx = 1.05 \ \text{cm}; \ C\uparrow$

3) 4.53 cm 4) 0.24 cm 5) R

6) $R = 4.54 \ \text{cm} \ \theta = 3.0^\circ$
Draw and Add Vectors

1) 11.3 m 22° E of N
2) 188 m/s 23° W of S
3) 9.4 m 29° E of S
4) 72 m/s 78° E of S

Change in Quantity

1) 10 m/s² 53° E of S
2) 15 m/s² 68° E of S
3) 9.8 m/s² down
4) 367 m/s² back
5) Don’t Do!
6) 9.7 m/s² 30° S of E

Worksheet 1.4

1) a. 2.7 m/s 33°
b. 33°
c. 21.6 m
d. 41°

Vector Problems

1) 148 m
3) 67°
5) 23.6°

7) swimmer 5: 494 s, ends up 693 m downstream, swimmer 6: 545 s

9) 587 km E and 749 km N

Vector Problems (Cosine or Trigonometric Methods)

1) 9.5 km/h 30° E of N

3) 271 km/h 11° W of N; 2.1 h

5) 288 km/h 8° E of N

Worksheet 1.5

1) Vx = 36.8 m/s; Vyo = 30.8 m/s

3) a. Vx = 30.8 m/s; Vyo = 36.8 m/s
b. 7.50 s
c. 231 m
d. 30.8 m/s horizontal

5) a. 10.0 s
b. 279 m
c. Oh Yeah!

7) a. Vx = 20.8 m/s; Vyo = 12 m/s
b. 2.45 s
c. 50.9 m
d. 7.34 m
e. 24 m/s 30° below horiz

9) 11 m High

11) 1.28 s

13) 24.7 m/s 53° above horiz